Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biofabrication ; 16(3)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38574551

RESUMEN

Conventional gut-on-chip (GOC) models typically represent the epithelial layer of the gut tissue, neglecting other important components such as the stromal compartment and the extracellular matrix (ECM) that play crucial roles in maintaining intestinal barrier integrity and function. These models often employ hard, flat porous membranes for cell culture, thus failing to recapitulate the soft environment and complex 3D architecture of the intestinal mucosa. Alternatively, hydrogels have been recently introduced in GOCs as ECM analogs to support the co-culture of intestinal cells inin vivo-like configurations, and thus opening new opportunities in the organ-on-chip field. In this work, we present an innovative GOC device that includes a 3D bioprinted hydrogel channel replicating the intestinal villi architecture containing both the epithelial and stromal compartments of the gut mucosa. The bioprinted hydrogels successfully support both the encapsulation of fibroblasts and their co-culture with intestinal epithelial cells under physiological flow conditions. Moreover, we successfully integrated electrodes into the microfluidic system to monitor the barrier formation in real time via transepithelial electrical resistance measurements.


Asunto(s)
Hidrogeles , Dispositivos Laboratorio en un Chip , Impedancia Eléctrica , Células Epiteliales , Electrodos
2.
Sci Rep ; 8(1): 8512, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29855599

RESUMEN

Cell microencapsulation is an attractive strategy for cell-based therapies that allows the implantation of genetically engineered cells and the continuous delivery of de novo produced therapeutic products. However, the establishment of a way to retrieve the implanted encapsulated cells in case the treatment needs to be halted or when cells need to be renewed is still a big challenge. The combination of micro and macroencapsulation approaches could provide the requirements to achieve a proper immunoisolation, while maintaining the cells localized into the body. We present the development and characterization of a porous implantable macrocapsule device for the loading of microencapsulated cells. The device was fabricated in polyamide by selective laser sintering (SLS), with controlled porosity defined by the design and the sintering conditions. Two types of microencapsulated cells were tested in order to evaluate the suitability of this device; erythropoietin (EPO) producing C2C12 myoblasts and Vascular Endothelial Growth Factor (VEGF) producing BHK fibroblasts. Results showed that, even if the metabolic activity of these cells decreased over time, the levels of therapeutic protein that were produced and, importantly, released to the media were stable.


Asunto(s)
Alginatos/química , Células Inmovilizadas/citología , Fibroblastos/citología , Mioblastos/citología , Nylons/química , Animales , Cápsulas/química , Supervivencia Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Células Inmovilizadas/metabolismo , Células Inmovilizadas/trasplante , Cricetinae , Composición de Medicamentos/métodos , Eritropoyetina/metabolismo , Fibroblastos/metabolismo , Fibroblastos/trasplante , Ratones , Mioblastos/metabolismo , Mioblastos/trasplante , Porosidad , Impresión Tridimensional , Andamios del Tejido/química , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Biotechnol Bioeng ; 115(6): 1604-1613, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29460274

RESUMEN

Transepithelial electrical measurements in the renal tubule have provided a better understanding of how kidney regulates electrolyte and water homeostasis through the reabsorption of molecules and ions (e.g., H2 O and NaCl). While experiments and measurement techniques using native tissue are difficult to prepare and to reproduce, cell cultures conducted largely with the Ussing chamber lack the effect of fluid shear stress which is a key physiological stimulus in the renal tubule. To overcome these limitations, we present a modular perfusion chamber for long-term culture of renal epithelial cells under flow that allows the continuous and simultaneous monitoring of both transepithelial electrical parameters and transepithelial NaCl transport. The latter is obtained from electrical conductivity measurements since Na+ and Cl- are the ions that contribute most to the electrical conductivity of a standard physiological solution. The system was validated with epithelial monolayers of raTAL and NRK-52E cells that were characterized electrophysiologically for 5 days under different flow conditions (i.e., apical perfusion, basal, or both). In addition, apical to basal chemical gradients of NaCl (140/70 and 70/140 mM) were imposed in order to demonstrate the feasibility of this methodology for quantifying and monitoring in real time the transepithelial reabsorption of NaCl, which is a primary function of the renal tubule.


Asunto(s)
Técnicas Citológicas/métodos , Células Epiteliales/metabolismo , Túbulos Renales/metabolismo , Cloruro de Sodio/metabolismo , Animales , Transporte Biológico , Línea Celular , Técnicas Citológicas/instrumentación , Modelos Biológicos , Ratas
4.
Lab Chip ; 18(1): 95-105, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29168876

RESUMEN

The interconnection of different tissue-tissue interfaces may extend organ-on-chips to a new generation of sophisticated models capable of recapitulating more complex organ-level functions. Single interfaces are largely recreated in organ-on-chips by culturing the cells on opposite sides of a porous membrane that splits a chamber in two or by connecting the cells of two adjacent compartments through microchannels. However, it is difficult to interconnect more than one interface using these approaches. To address this challenge, we present a novel microfluidic device where cells are arranged in parallel compartments and are highly interconnected through a grid of microgrooves, which facilitates paracrine signaling and heterotypic cell-cell contact between multiple tissues. In addition, the device includes electrodes on the substrate for the measurement of transepithelial electrical resistance (TEER). Unlike conventional methods for measuring the TEER where electrodes are on each side of the cell barrier, a method with only electrodes on the substrate has been validated. As a proof-of-concept, we have used the device to mimic the structure of the blood-retinal barrier by co-culturing primary human retinal endothelial cells (HREC), a human neuroblastoma cell line (SH-SY5Y), and a human retinal pigment epithelial cell line (ARPE-19). Cell barrier formations were assessed by a permeability assay, TEER measurements, and ZO-1 expression. These results validate the proposed microfluidic device with microgrooves as a promising in vitro tool for the compartmentalization and monitoring of barrier tissues.


Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Modelos Biológicos , Retina , Vasos Retinianos , Técnicas de Cultivo de Célula , Células Cultivadas , Impedancia Eléctrica , Diseño de Equipo , Humanos , Retina/citología , Retina/fisiología , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/fisiología , Vasos Retinianos/citología , Vasos Retinianos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA