Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Pathologie (Heidelb) ; 45(3): 180-189, 2024 May.
Artículo en Alemán | MEDLINE | ID: mdl-38568256

RESUMEN

Due to the considerable technological progress in molecular and genetic diagnostics as well as increasing insights into the molecular pathogenesis of diseases, there has been a fundamental paradigm shift in the past two decades from a "one-size-fits-all approach" to personalized, molecularly informed treatment strategies. Personalized medicine or precision medicine focuses on the genetic, physiological, molecular, and biochemical differences between individuals and considers their effects on the development, prevention, and treatment of diseases. As a pioneer of personalized medicine, the field of oncology is particularly noteworthy, where personalized diagnostics and treatment have led to lasting change in the treatment of cancer patients in recent years. In this article, the significant change towards personalized treatment concepts, especially in the field of personalized oncology, will be discussed and examined in more detail.


Asunto(s)
Oncología Médica , Neoplasias , Medicina de Precisión , Medicina de Precisión/métodos , Medicina de Precisión/tendencias , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/diagnóstico , Oncología Médica/métodos , Oncología Médica/tendencias
2.
BMC Cancer ; 24(1): 108, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243190

RESUMEN

BACKGROUND: In neuro-oncology, the inclusion of tumor patients in the molecular tumor board has only become increasingly widespread in recent years, but so far there are no standards for indication, procedure, evaluation, therapy recommendations and therapy implementation of neuro-oncological patients. The present work examines the current handling of neuro-oncological patients included in molecular tumor boards in Germany. METHODS: We created an online based survey with questions covering the handling of neuro-oncologic patient inclusion, annotation of genetic analyses, management of target therapies and the general role of molecular tumor boards in neuro-oncology in Germany. We contacted all members of the Neuro-Oncology working group (NOA) of the German Cancer Society (DKG) by e-mail. RESULTS: 38 responses were collected. The majority of those who responded were specialists in neurosurgery or neurology with more than 10 years of professional experience working at a university hospital. Molecular tumor boards (MTB) regularly take place once a week and all treatment disciplines of neuro-oncology patients take part. The inclusions to the MTB are according to distinct tumors and predominantly in case of tumor recurrence. An independently MTB member mostly create the recommendations, which are regularly implemented in the tumor treatment. Recommendations are given for alteration classes 4 and 5. Problems exist mostly within the cost takeover of experimental therapies. The experimental therapies are mostly given in the department of medical oncology. CONCLUSIONS: Molecular tumor boards for neuro-oncological patients, by now, are not standardized in Germany. Similarities exists for patient inclusion and interpretation of molecular alterations; the time point of inclusion and implementation during the patient treatment differ between the various hospitals. Further studies for standardization and harmonisation are needed. In summary, most of the interviewees envision great opportunities and possibilities for molecular-based neuro-oncological therapy in the future.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Encuestas y Cuestionarios , Oncología Médica/métodos , Hospitales Universitarios , Alemania
3.
NPJ Precis Oncol ; 7(1): 106, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864096

RESUMEN

A growing number of druggable targets and national initiatives for precision oncology necessitate broad genomic profiling for many cancer patients. Whole exome sequencing (WES) offers unbiased analysis of the entire coding sequence, segmentation-based detection of copy number alterations (CNAs), and accurate determination of complex biomarkers including tumor mutational burden (TMB), homologous recombination repair deficiency (HRD), and microsatellite instability (MSI). To assess the inter-institution variability of clinical WES, we performed a comparative pilot study between German Centers of Personalized Medicine (ZPMs) from five participating institutions. Tumor and matched normal DNA from 30 patients were analyzed using custom sequencing protocols and bioinformatic pipelines. Calling of somatic variants was highly concordant with a positive percentage agreement (PPA) between 91 and 95% and a positive predictive value (PPV) between 82 and 95% compared with a three-institution consensus and full agreement for 16 of 17 druggable targets. Explanations for deviations included low VAF or coverage, differing annotations, and different filter protocols. CNAs showed overall agreement in 76% for the genomic sequence with high wet-lab variability. Complex biomarkers correlated strongly between institutions (HRD: 0.79-1, TMB: 0.97-0.99) and all institutions agreed on microsatellite instability. This study will contribute to the development of quality control frameworks for comprehensive genomic profiling and sheds light onto parameters that require stringent standardization.

4.
Blood ; 142(11): 961-972, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37363867

RESUMEN

The final analysis of the open-label, multicenter phase 2 CLL2-GIVe trial shows response and tolerability of the triple combination of obinutuzumab, ibrutinib, and venetoclax (GIVe regimen) in 41 previously untreated patients with high-risk chronic lymphocytic leukemia (CLL) with del(17p) and/or TP53 mutation. Induction consisted of 6 cycles of GIVe; venetoclax and ibrutinib were continued up to cycle 12 as consolidation. Ibrutinib was given until cycle 15 or up to cycle 36 in patients not achieving a complete response and with detectable minimal residual disease. The primary end point was the complete remission rate at cycle 15, which was achieved at 58.5% (95% CI, 42.1-73.7; P < .001). The last patient reached the end of the study in January 2022. After a median observation time of 38.4 months (range, 3.7-44.9), the 36-month progression-free survival was 79.9%, and the 36-month overall survival was 92.6%. Only 6 patients continued ibrutinib maintenance. Adverse events of concern were neutropenia (48.8%, grade ≥3) and infections (19.5%, grade ≥3). Cardiovascular toxicity grade 3 occurred as atrial fibrillation at a rate of 2.4% between cycles 1 and 12, as well as hypertension (4.9%) between cycles 1 and 6. The incidence of adverse events of any grade and grade ≥3 was highest during induction and decreased over time. Progressive disease was observed in 7 patients between cycles 27 and 42. In conclusion, the CLL2-GIVe regimen is a promising fixed-duration, first-line treatment for patients with high-risk CLL with a manageable safety profile.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Anticuerpos Monoclonales Humanizados/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
5.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36982486

RESUMEN

BACKGROUND: Mutations in cKIT or PDGFRA are found in up to 90% of patients with gastrointestinal stromal tumors (GISTs). Previously, we described the design, validation, and clinical performance of a digital droplet (dd)PCR assay panel for the detection of imatinib-sensitive cKIT and PDFGRA mutations in circulating tumor (ct)DNA. In this study, we developed and validated a set of ddPCR assays for the detection of cKIT mutations mediating resistance to cKIT kinase inhibitors in ctDNA. In addition, we cross-validated these assays using next generation sequencing (NGS). METHODS: We designed and validated five new ddPCR assays to cover the most frequent cKIT mutations mediating imatinib resistance in GISTs. For the most abundant imatinib-resistance-mediating mutations in exon 17, a drop-off, probe-based assay was designed. Dilution series (of decreasing mutant (MUT) allele frequency spiked into wildtype DNA) were conducted to determine the limit of detection (LoD). Empty controls, single wildtype controls, and samples from healthy individuals were tested to assess specificity and limit of blank (LoB). For clinical validation, we measured cKIT mutations in three patients and validated results using NGS. RESULTS: Technical validation demonstrated good analytical sensitivity, with a LoD ranging between 0.006% and 0.16% and a LoB ranging from 2.5 to 6.7 MUT fragments/mL. When the ddPCR assays were applied to three patients, the abundance of ctDNA in serial plasma samples reflected the individual disease course, detected disease activity, and indicated resistance mutations before imaging indicated progression. Digital droplet PCR showed good correlation to NGS for individual mutations, with a higher sensitivity of detection. CONCLUSIONS: This set of ddPCR assays, together with our previous set of cKIT and PDGFRA mutations assays, allows for dynamic monitoring of cKIT and PDGFRA mutations during treatment. Together with NGS, the GIST ddPCR panel will complement imaging of GISTs for early response evaluation and early detection of relapse, and thus it might facilitate personalized decision-making.


Asunto(s)
Ácidos Nucleicos Libres de Células , ADN Tumoral Circulante , Tumores del Estroma Gastrointestinal , Humanos , ADN Tumoral Circulante/genética , ADN/uso terapéutico , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/patología , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Mutación , Recurrencia Local de Neoplasia/genética , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Tirosina Quinasas Receptoras/genética , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética
6.
Front Oncol ; 12: 875117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646639

RESUMEN

The NPM-ALK fusion kinase is expressed in 60% of systemic anaplastic large-cell lymphomas (ALCL). A Nuclear Interaction Partner of ALK (NIPA) was identified as a binding partner of NPM-ALK. To identify the precise role of NIPA for NPM-ALK-driven lymphomagenesis, we investigated various NPM-ALK+ cell lines and mouse models. Nipa deletion in primary mouse embryonic fibroblasts resulted in reduced transformation ability and colony formation upon NPM-ALK expression. Downregulating NIPA in murine NPM-ALK+ Ba/F3 and human ALCL cells decreased their proliferation ability and demonstrated synergistic effects of ALK inhibition and NIPA knockdown. Comprehensive in vivo analyses using short- and long-latency transplantation mouse models with NPM-ALK+ bone marrow (BM) revealed that Nipa deletion inhibited NPM-ALK-induced tumorigenesis with prolonged survival and reduced spleen colonies. To avoid off-target effects, we combined Nipa deletion and NPM-ALK expression exclusively in T cells using a lineage-restricted murine ALCL-like model resembling human disease: control mice died from neoplastic T-cell infiltration, whereas mice transplanted with Lck-CreTG/wtNipaflox/flox NPM-ALK+ BM showed significantly prolonged survival. Immunophenotypic analyses indicated a characteristic ALCL-like phenotype in all recipients but revealed fewer "stem-cell-like" features of Nipa-deficient lymphomas compared to controls. Our results identify NIPA as a crucial player in effective NPM-ALK-driven ALCL-like disease in clinically relevant murine and cell-based models.

7.
Cancer Immunol Immunother ; 71(12): 2913-2928, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35476127

RESUMEN

Wilms' tumor 1 (WT1) protein is highly immunogenic and overexpressed in acute myeloid leukemia (AML), consequently ranked as a promising target for novel immunotherapeutic strategies. Here we report our experience of a phase I/II clinical trial (NCT01051063) of a vaccination strategy based on WT1 recombinant protein (WT1-A10) together with vaccine adjuvant AS01B in five elderly AML patients (median age 69 years, range 63-75) receiving a total of 62 vaccinations (median 18, range 3-20) after standard chemotherapy. Clinical benefit was observed in three patients: one patient achieved measurable residual disease clearance during WT1 vaccination therapy, another patient maintained long-term molecular remission over 59 months after the first vaccination cycle. Interestingly, in one case, we observed a complete clonal switch at AML relapse with loss of WT1 expression, proposing suppression of the original AML clone by WT1-based vaccination therapy. Detected humoral and cellular CD4+ T cell immune responses point to efficient immune stimulation post-vaccination, complementing hints for induced conventional T cell infiltration into the bone marrow and a shift from senescent/exhausted to a more activated T cell profile. Overall, the vaccinations with WT1 recombinant protein had an acceptable safety profile and were thus well tolerated.To conclude, our data provide evidence of potential clinical efficacy of WT1 protein-based vaccination therapy in AML patients, warranting further investigations.


Asunto(s)
Vacunas contra el Cáncer , Leucemia Mieloide Aguda , Anciano , Humanos , Persona de Mediana Edad , Leucemia Mieloide Aguda/terapia , Proteínas Recombinantes/uso terapéutico , Vacunación , Proteínas WT1/uso terapéutico
8.
Epigenetics ; 17(6): 612-624, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34159881

RESUMEN

The stage and molecular pathology-dependent prognosis of breast cancer, the limited treatment options for triple-negative carcinomas, as well as the development of resistance to therapies illustrate the need for improved early diagnosis and the development of new therapeutic approaches. Increasing data suggests that some answers to these challenges could be found in the area of epigenetics. In this study, we focus on the current research of the epigenetics of breast cancer, especially on the potential of epigenetics for clinical application in diagnostics, risk stratification and therapy. The differential DNA methylation status of specific gene regions has been used in the past to differentiate breast cancer cells from normal tissue. New technologies as detection of circulating nucleic acids including microRNAs to early detect breast cancer are emerging. Pattern of DNA methylation and expression of histone-modifying enzymes have been successfully used for risk stratification. However, all these epigenetic biomarkers should be validated in larger clinical studies. Recent preclinical and clinical studies show a therapeutic benefit of epigenetically active drugs for breast cancer entities that are still difficult to treat (triple negative, UICC stage IV). Remarkably, epigenetic therapies combined with chemotherapies or hormone-based therapies represent the most promising strategy. At the current stage, the integration of epigenetic substances into established breast cancer therapy protocols seems to hold the greatest potential for a clinical application of epigenetic research.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Metilación de ADN , Epigénesis Genética , Epigenómica/métodos , Femenino , Humanos , Medición de Riesgo
9.
J Clin Invest ; 130(6): 2827-2844, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32338640

RESUMEN

Inherited bone marrow failure syndromes (IBMFSs) are a heterogeneous group of disorders characterized by defective hematopoiesis, impaired stem cell function, and cancer susceptibility. Diagnosis of IBMFS presents a major challenge due to the large variety of associated phenotypes, and novel, clinically relevant biomarkers are urgently needed. Our study identified nuclear interaction partner of ALK (NIPA) as an IBMFS gene, as it is significantly downregulated in a distinct subset of myelodysplastic syndrome-type (MDS-type) refractory cytopenia in children. Mechanistically, we showed that NIPA is major player in the Fanconi anemia (FA) pathway, which binds FANCD2 and regulates its nuclear abundance, making it essential for a functional DNA repair/FA/BRCA pathway. In a knockout mouse model, Nipa deficiency led to major cell-intrinsic defects, including a premature aging phenotype, with accumulation of DNA damage in hematopoietic stem cells (HSCs). Induction of replication stress triggered a reduction in and functional decline of murine HSCs, resulting in complete bone marrow failure and death of the knockout mice with 100% penetrance. Taken together, the results of our study add NIPA to the short list of FA-associated proteins, thereby highlighting its potential as a diagnostic marker and/or possible target in diseases characterized by hematopoietic failure.


Asunto(s)
Síndromes Congénitos de Insuficiencia de la Médula Ósea , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi , Células Madre Hematopoyéticas/metabolismo , Proteínas Nucleares , Animales , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/metabolismo , Síndromes Congénitos de Insuficiencia de la Médula Ósea/patología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Células Madre Hematopoyéticas/patología , Ratones , Ratones Noqueados , Proteínas Nucleares/deficiencia , Proteínas Nucleares/metabolismo , Unión Proteica
10.
Blood ; 134(4): 383-388, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31186273

RESUMEN

Activating mutations in FMS-like tyrosine kinase receptor-3 (FLT3) and Nucleophosmin-1 (NPM1) are most frequent alterations in acute myeloid leukemia (AML), and are often coincidental. The mutational status of NPM1 has strong prognostic relevance to patients with point mutations of the FLT3 tyrosine kinase domain (TKD), but the biological mechanism underlying this effect remains unclear. In the present study, we investigated the effect of the coincidence of NPM1c and FLT3-TKD. Although expression of FLT3-TKD is not sufficient to induce a disease in mice, coexpression with NPM1c rapidly leads to an aggressive myeloproliferative disease in mice with a latency of 31.5 days. Mechanistically, we could show that FLT3-TKD is able to activate the downstream effector molecule signal transducer and activator of transcription 5 (STAT5) exclusively in the presence of mutated NPM1c. Moreover, NPM1c alters the cellular localization of FLT3-TKD from the cell surface to the endoplasmic reticulum, which might thereby lead to the aberrant STAT5 activation. Importantly, aberrant STAT5 activation occurs not only in primary murine cells but also in patients with AML with combined FLT3-TKD and NPM1c mutations. Thus, our data indicate a new mechanism, how NPM1c mislocalizes FLT3-TKD and changes its signal transduction ability.


Asunto(s)
Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación , Proteínas Nucleares/genética , Transducción de Señal , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo , Sustitución de Aminoácidos , Animales , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Duplicación de Gen , Regulación Leucémica de la Expresión Génica , Humanos , Ratones , Proteínas Nucleares/metabolismo , Nucleofosmina , Transporte de Proteínas , Factor de Transcripción STAT5/metabolismo , Secuencias Repetidas en Tándem
12.
Cell Mol Life Sci ; 76(2): 369-380, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30357422

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) represent the lifelong source of all blood cells and continuously regenerate the hematopoietic system through differentiation and self-renewal. The process of differentiation is initiated in the G1 phase of the cell cycle, when stem cells leave their quiescent state. During G1, the anaphase-promoting complex or cyclosome associated with the coactivator Cdh1 is highly active and marks proteins for proteasomal degradation to regulate cell proliferation. Following Cdh1 knockdown in HSPCs, we analyzed human and mouse hematopoiesis in vitro and in vivo in competitive transplantation assays. We found that Cdh1 is highly expressed in human CD34+ HSPCs and downregulated in differentiated subsets; whereas, loss of Cdh1 restricts myeloid differentiation, supports B cell development and preserves immature short-term HSPCs without affecting proliferation or viability. Our data highlight a role of Cdh1 as a regulator of balancing the maintenance of HSPCs and differentiation into mature blood cells.


Asunto(s)
Proteínas Cdh1/metabolismo , Diferenciación Celular/genética , Células Madre Hematopoyéticas/citología , Animales , Antígenos CD34/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Proteínas Cdh1/antagonistas & inhibidores , Proteínas Cdh1/genética , Proliferación Celular , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-kit/deficiencia , Proteínas Proto-Oncogénicas c-kit/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Células Madre/citología , Células Madre/metabolismo
13.
J Exp Med ; 213(2): 273-90, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26834157

RESUMEN

JAK2V617F(+) myeloproliferative neoplasms (MPNs) frequently progress into leukemias, but the factors driving this process are not understood. Here, we find excess Hedgehog (HH) ligand secretion and loss of PTCH2 in myeloproliferative disease, which drives canonical and noncanonical HH-signaling. Interestingly, Ptch2(-/-) mice mimic dual pathway activation and develop a MPN-phenotype with leukocytosis (neutrophils and monocytes), strong progenitor and LKS mobilization, splenomegaly, anemia, and loss of lymphoid lineages. HSCs exhibit increased cell cycling with improved stress hematopoiesis after 5-FU treatment, and this results in HSC exhaustion over time. Cytopenias, LKS loss, and mobilization are all caused by loss of Ptch2 in the niche, whereas hematopoietic loss of Ptch2 drives leukocytosis and promotes LKS maintenance and replating capacity in vitro. Ptch2(-/-) niche cells show hyperactive noncanonical HH signaling, resulting in reduced production of essential HSC regulators (Scf, Cxcl12, and Jag1) and depletion of osteoblasts. Interestingly, Ptch2 loss in either the niche or in hematopoietic cells dramatically accelerated human JAK2V617F-driven pathogenesis, causing transformation of nonlethal chronic MPNs into aggressive lethal leukemias with >30% blasts in the peripheral blood. Our findings suggest HH ligand inhibitors as possible drug candidates that act on hematopoiesis and the niche to prevent transformation of MPNs into leukemias.


Asunto(s)
Trastornos Mieloproliferativos/etiología , Receptores de Superficie Celular/deficiencia , Animales , Progresión de la Enfermedad , Proteínas Hedgehog/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Leucemia/etiología , Leucemia/genética , Leucemia/metabolismo , Ligandos , Linfopenia/etiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patología , Receptores Patched , Receptor Patched-2 , Fenotipo , Policitemia Vera/genética , Policitemia Vera/metabolismo , Policitemia Vera/patología , Receptores de Superficie Celular/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Nicho de Células Madre
14.
Nat Med ; 20(12): 1401-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25419709

RESUMEN

We searched for genetic alterations in human B cell lymphoma that affect the ubiquitin-proteasome system. This approach identified FBXO25 within a minimal common region of frequent deletion in mantle cell lymphoma (MCL). FBXO25 encodes an orphan F-box protein that determines the substrate specificity of the SCF (SKP1-CUL1-F-box)(FBXO25) ubiquitin ligase complex. An unbiased screen uncovered the prosurvival protein HCLS1-associated protein X-1 (HAX-1) as the bona fide substrate of FBXO25 that is targeted after apoptotic stresses. Protein kinase Cδ (PRKCD) initiates this process by phosphorylating FBXO25 and HAX-1, thereby spatially directing nuclear FBXO25 to mitochondrial HAX-1. Our analyses in primary human MCL identify monoallelic loss of FBXO25 and stabilizing HAX1 phosphodegron mutations. Accordingly, FBXO25 re-expression in FBXO25-deleted MCL cells promotes cell death, whereas expression of the HAX-1 phosphodegron mutant inhibits apoptosis. In addition, knockdown of FBXO25 significantly accelerated lymphoma development in Eµ-Myc mice and in a human MCL xenotransplant model. Together we identify a PRKCD-dependent proapoptotic mechanism controlling HAX-1 stability, and we propose that FBXO25 functions as a haploinsufficient tumor suppressor and that HAX1 is a proto-oncogene in MCL.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Apoptosis/genética , Proteínas F-Box/genética , Linfoma de Células B/genética , Linfoma de Células del Manto/genética , Proteínas del Tejido Nervioso/genética , Proteína Quinasa C-delta/genética , Proto-Oncogenes/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Animales , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células del Manto/metabolismo , Ratones , Proto-Oncogenes Mas , Transducción de Señal/genética
15.
J Biol Chem ; 287(45): 37997-8005, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22955283

RESUMEN

NIPA is an F-box-like protein that contributes to the timing of mitotic entry. It targets nuclear cyclin B1 for ubiquitination in interphase, whereas in G(2)/M phase, NIPA is inactivated by phosphorylation to allow for cyclin B1 accumulation, a critical event for proper G(2)/M transition. We recently specified three serine residues of NIPA and demonstrated a sequential phosphorylation at G(2)/M, where initial Ser-354 and Ser-359 phosphorylation is most crucial for SCF(NIPA) inactivation. In this study, we identified ERK2 as the kinase responsible for this critical initial phosphorylation step. Using in vitro kinase assays, we found that both ERK1 and ERK2 phosphorylated NIPA with high efficiency. Mutation of either Ser-354 or Ser-359 abolished ERK-dependent NIPA phosphorylation. Pharmacologic inhibition of ERK1/2 in cell lines resulted in decreased NIPA phosphorylation at G(2)/M. By combining cell cycle synchronization with stable expression of shRNA targeting either ERK1 or ERK2, we showed that ERK2 but not ERK1 mediated NIPA inactivation at G(2)/M. ERK2 knockdown led to a delay at the G(2)/M transition, a phenotype also observed in cells expressing a phospho-deficient mutant of NIPA. Thus, our data add to the recently described divergent functions of ERK1 and ERK2 in cell cycle regulation, which may be due in part to the differential ability of these kinases to phosphorylate and inactivate NIPA at G(2)/M.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Butadienos/farmacología , Proteínas de Ciclo Celular/genética , División Celular , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Fase G2 , Células HEK293 , Humanos , Immunoblotting , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación , Células 3T3 NIH , Nitrilos/farmacología , Proteínas Nucleares/genética , Fosforilación , Unión Proteica , Interferencia de ARN , Serina/genética , Serina/metabolismo
16.
PLoS One ; 7(5): e37433, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22624029

RESUMEN

The Cks1 component of the SCF(Skp2) complex is necessary for p27(Kip1) ubiquitylation and degradation. Cks1 expression is elevated in various B cell malignancies including Burkitt lymphoma and multiple myeloma. We have previously shown that loss of Cks1 results in elevated p27(Kip1) levels and delayed tumor development in a mouse model of Myc-induced B cell lymphoma. Surprisingly, loss of Skp2 in the same mouse model also resulted in elevated p27(Kip1) levels but exhibited no impact on tumor onset. This raises the possibility that Cks1 could have other oncogenic activities than suppressing p27(Kip1). To challenge this notion we have targeted overexpression of Cks1 to B cells using a conditional retroviral bone marrow transduction-transplantation system. Despite potent ectopic overexpression, Cks1 was unable to promote B cell hyperproliferation or B cell malignancies, indicating that Cks1 is not oncogenic when overexpressed in B cells. Since Skp2 overexpression can drive T-cell tumorigenesis or other cancers we also widened the quest for oncogenic activity of Cks1 by ubiquitously expressing Cks1 in hematopoetic progenitors. At variance with c-Myc overexpression, which caused acute myeloid leukemia, Cks1 overexpression did not induce myeloproliferation or leukemia. Therefore, despite being associated with a poor prognosis in various malignancies, sole Cks1 expression is insufficient to induce lymphoma or a myeloproliferative disease in vivo.


Asunto(s)
Quinasas CDC2-CDC28/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias Hematológicas/metabolismo , Linfoma de Células B/metabolismo , Neoplasias/fisiopatología , Animales , Médula Ósea/metabolismo , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Ratones , Ratones Transgénicos , Neoplasias/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Retroviridae
17.
Blood ; 116(22): 4600-11, 2010 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-20696946

RESUMEN

The oncogenic JAK2V617F mutation is found in myeloproliferative neoplasms (MPNs) and is believed to be critical for leukemogenesis. Here we show that JAK2V617F requires an intact SH2 domain for constitutive activation of downstream signaling pathways. In addition, there is a strict requirement of cytokine receptor expression for the activation of this oncogene. Further analysis showed that the SH2 domain mutation did not interfere with JAK2 membrane distribution. However, coimmunoprecipitated experiments revealed a role for the SH2 domain in the aggregation and cross-phosphorylation of JAK2V617F at the cell membrane. Forced overexpression of cytokine receptors could rescue the JAK2V617F SH2 mutant supporting a critical role of JAK2V617F abundance for constitutive activation. However, under physiologic cytokine receptor expression the SH2 domain is absolutely necessary for oncogenic JAK2V617F activation. This is demonstrated in a bone marrow transplantation model, in which an intact SH2 domain in JAK2V617F is required for the induction of an MPN-like disease. Thus, our results points to an indispensable role of the SH2 domain in JAK2V617F-induced MPNs.


Asunto(s)
Janus Quinasa 2/genética , Mutación , Trastornos Mieloproliferativos/enzimología , Dominios Homologos src , Animales , Línea Celular Tumoral , Proliferación Celular , Humanos , Ratones , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Fosforilación
18.
Hum Mol Genet ; 12(6): 631-46, 2003 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-12620969

RESUMEN

In previous overexpression studies we revealed a role for the lysosomal membrane protein LIMP-2/LGP85 in lysosomal biogenesis. LIMP-2-deficient mice show an increased postnatal mortality which is associated with a development of a uni- or bilateral hydronephrosis caused by an obstruction of the ureteropelvic junction. An accumulation of lysosomes in epithelial cells of the ureter adjacent to the ureteral lumen and a disturbed apical expression of uroplakin was observed, suggesting an impairment of membrane transport processes. Serious hearing impairment in LIMP-2-deficient animals was indicated by deficits in acoustic startle responses, in brainstem evoked auditory potentials and a reduced endochondral potential. LIMP-2-deficient mice suffer from a massive decline of spiral ganglia in the cochlea concomitant with that of the inner and outer hair cells. These pathological changes begin at the age of 3 months and are probably secondary to a degeneration of the stria vascularis. LIMP-2-deficient mice are also characterized by a peripheral demyelinating neuropathy. Demyelinization was found to be associated with a massive loss of peripheral myelin proteins and an increased activity and expression of lysosomal proteins highlighting a hitherto unknown role of the lysosomal compartment in the development of this myelination disorder. The phenotype of LIMP-2-deficient mice stimulates the search for mutations in human disorders associated with degeneration of the stria vascularis and/or demyelinization of peripheral nerves.


Asunto(s)
Antígenos CD36/genética , Sordera/genética , Glicoproteínas de Membrana , Proteínas de la Membrana , Enfermedades del Sistema Nervioso Periférico/genética , Sialoglicoproteínas , Animales , Animales Recién Nacidos , Transporte Biológico , Southern Blotting , Western Blotting , Antígenos CD36/fisiología , Catepsina D/biosíntesis , Membrana Celular , Cóclea/metabolismo , Cóclea/patología , Enfermedades Desmielinizantes/genética , Células Epiteliales/metabolismo , Potenciales Evocados Auditivos , Exones , Fibroblastos/metabolismo , Genotipo , Hipertrofia , Riñón/metabolismo , Proteínas de Membrana de los Lisosomas , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Microscopía Electrónica , Microscopía Fluorescente , Modelos Genéticos , Mutación , Fenotipo , Receptores Depuradores , Recombinación Genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fracciones Subcelulares/metabolismo , Factores de Tiempo , Distribución Tisular , Transgenes , Uréter/metabolismo , Vejiga Urinaria/metabolismo , Urotelio/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA