Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biol Pharm Bull ; 46(1): 123-127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36596520

RESUMEN

Mutations in leucine rich-repeat kinase 2 (LRRK2) cause autosomal-dominant, late-onset Parkinson's disease (PD). Accumulating evidence indicates that PD-associated LRRK2 mutations induce neuronal cell death by increasing cellular reactive oxygen species levels. However, the mechanism of increased oxidative stress associated with LRRK2 kinase activity remains unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that protects cells from oxidative stress by inducing the expression of antioxidant genes. In the present, it was found that decreased expression of Nrf2 and mRNA expression of its target genes in Lrrk2-transgenic mouse brain and LRRK2 overexpressing SH-SY5Y cells. Furthermore, knockdown of glycogen synthase kinase-3ß (GSK-3ß) recovered Nrf2 expression and mRNA expression of its target genes in LRRK2 overexpressing SH-SY5Y cells. We concluded that since Nrf2 is transcriptional factor for antioxidative responses, therefore, reduction of Nrf2 expression by LRRK2 may be part of a mechanism that LRRK2-induces vulnerability to oxidative stress in neuronal cells.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Neuroblastoma , Ratones , Animales , Humanos , Ratones Transgénicos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Neuroblastoma/metabolismo , Encéfalo/metabolismo , Antioxidantes/metabolismo , ARN Mensajero/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo
2.
J Nutr Metab ; 2023: 9774157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36660406

RESUMEN

Type 2 diabetes mellitus (T2DM), a lifestyle-related disease, is developed due to eating habits and decreased physical activity. Diabetes also increases the risk of cancer and major neurodegenerative diseases; controlling the onset of diabetes helps prevent various illnesses. Eating seaweed, such as Undaria pinnatifida (wakame), is a part of the Asian food culture. Therefore, we analyzed the antidiabetic effect of wakame intake using the high-fat diet-induced diabetes mouse model. Furthermore, we analyzed the effect of wakame extract on the cell membrane translocation of glucose transporter-4 (GLUT4) and activation of insulin signal molecules, such as AKT and AMPK, in insulin-sensitive tissues. Differentiated C2C12 cells were incubated with wakame components. The membrane translocation of GLUT4 and phosphorylation of AKT and AMPK were investigated with immunofluorescence staining and Western blotting, respectively. Also, male C57BL/6J mice were fed the normal diet (ND), high-fat diet (HFD), ND with 1% wakame powder (ND + W), or HFD with 1% wakame powder (HFD + W). We evaluated the effect of wakame intake on high-fat diet-induced glucose intolerance using an oral glucose tolerance test. Moreover, we analyzed insulin signaling molecules, such as GLUT4, AKT, and AMPK, in muscle using Western blotting. GLUT4 membrane translocation was promoted by wakame components. Also, GLUT4 levels and AKT and AMPK phosphorylation were significantly elevated by wakame components in C2C12 cells. In addition, the area under the curve (AUC) of the HFD + W group was significantly smaller than that of the HFD group. Furthermore, the level of GLUT4 in the muscle was increased in the wakame intake group. This study revealed that various wakame components exerted antidiabetic effects on the mice on a high-fat diet by promoting glucose uptake in the skeletal muscle, enhancing GLUT4 levels, and activating AKT and AMPK.

3.
J Toxicol Sci ; 43(11): 631-643, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30404997

RESUMEN

Autism is a complex neurodevelopmental disorder characterized by impaired social communication and social interactions, and repetitive behaviors. The etiology of autism remains unknown and its molecular basis is not yet well understood. Pregnant Sprague-Dawley (SD) rats were administered 600 mg/kg of valproic acid (VPA) by intraperitoneal injection on day 12.5 of gestation. Both 11- to 13-week-old male and female rat models of VPA-induced autism showed impaired sociability and impaired preference for social novelty as compared to the corresponding control SD rats. Significantly reduced mRNA expressions of social behavior-related genes, such as those encoding the serotonin receptor, brain-derived neurotrophic factor and neuroligin3, and significantly increased expression levels of proinflammatory cytokines, such as interleukin-1 ß and tumor necrosis factor-α, were noted in the hippocampi of both male and female rats exposed to VPA in utero. The hippocampal expression level of gamma amino butyric acid (GABA) enzyme glutamic acid decarboxylase (GAD) 67 protein was reduced in both male and female VPA-exposed rats as compared to the corresponding control animals. Our results indicate that developmental exposure to VPA affects the social behavior in rats by modulating the expression levels of social behavior-related genes and inflammatory mediators accompanied with changes in GABA enzyme in the hippocampus.


Asunto(s)
Trastorno Autístico/metabolismo , Trastorno Autístico/psicología , Glutamato Descarboxilasa/metabolismo , Conducta Social , Ácido Valproico/efectos adversos , Animales , Trastorno Autístico/inducido químicamente , Trastorno Autístico/genética , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Hipocampo/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Embarazo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo
4.
Acta Radiol Open ; 7(10): 2058460118806657, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30377541

RESUMEN

Spontaneously growing testicular seminoma in the aged rat was imaged by one of the most sensitive imaging modalities, namely, phase-contrast X-ray computed tomography (CT) with crystal X-ray interferometry. Phase-contrast X-ray CT clearly depicted the detailed inner structures of the tumor and provided 20× magnified images compared to light-microscopic images. Phase-contrast X-ray CT images are generated based on density variations in the object, whereas pathological images are based on differentiation of cellular structures, such as the cellular nuclei and cytoplasm. The mechanism of image generation differs between the two techniques: phase-contrast X-ray CT detects even minute differences in the density among pathological structures, depending, for example, on the number and sizes of the nuclei, variations of the cytoplasmic components, and presence/absence of fibrous septa, cystic changes, and hemorrhage. Thus, phase-contrast X-ray CT with a spatial resolution of 26 µm might allow prediction of the morphological characteristics of a tumor even before histopathological processing.

5.
Biol Pharm Bull ; 41(5): 806-810, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29709918

RESUMEN

In this study, we examined the inhibitory effects of ferulic acid and caffeic acid on melanin production using a murine B16 melanoma cell line. The mechanisms by which the two acids inhibit melanin production were investigated by evaluating their effects on the activity of tyrosinase, which is involved is the first step of melanin biosynthesis. Ferulic acid showed no toxicity against the melanoma cells at any dose, whereas caffeic acid exerted cellular toxicity at concentrations higher than 0.35 mM. Both ferulic and caffeic acids effectively inhibited melanin production in the B16 melanoma cells. Ferulic acid reduced tyrosinase activity by directly binding to the enzyme, whereas no binding was observed between caffeic acid and tyrosinase. Both ferulic acid and caffeic acid inhibited casein kinase 2 (CK2)-induced phosphorylation of tyrosinase in a dose-dependent manner in vitro. Ferulic acid was found to be a more effective inhibitor of melanin production than caffeic acid; this difference in the inhibitory efficacy between the two substances could be attributable to the difference in their tyrosine-binding activity. Our analysis revealed that both substances also inhibited the CK2-mediated phosphorylation of tyrosinase.


Asunto(s)
Ácidos Cafeicos/farmacología , Quinasa de la Caseína II/antagonistas & inhibidores , Ácidos Cumáricos/farmacología , Melaninas/antagonistas & inhibidores , Melanoma Experimental/metabolismo , Monofenol Monooxigenasa/metabolismo , Animales , Benzoquinonas/metabolismo , Quinasa de la Caseína II/metabolismo , Línea Celular Tumoral , Dihidroxifenilalanina/análogos & derivados , Dihidroxifenilalanina/metabolismo , Melaninas/metabolismo , Ratones , Fosforilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA