Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Neurosci ; 39(28): 5581-5593, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31061086

RESUMEN

Rhodopsin mislocalization is frequently observed in retinitis pigmentosa (RP) patients. For example, class I mutant rhodopsin is deficient in the VxPx trafficking signal, mislocalizes to the plasma membrane (PM) of rod photoreceptor inner segments (ISs), and causes autosomal dominant RP. Mislocalized rhodopsin causes photoreceptor degeneration in a manner independent of light-activation. In this manuscript, we took advantage of Xenopus laevis models of both sexes expressing wild-type human rhodopsin or its class I Q344ter mutant fused to Dendra2 fluorescent protein to characterize a novel light-independent mechanism of photoreceptor degeneration caused by mislocalized rhodopsin. We found that rhodopsin mislocalized to the PM is actively internalized and transported to lysosomes where it is degraded. This degradation process results in the downregulation of a crucial component of the photoreceptor IS PM: the sodium-potassium ATPase α-subunit (NKAα). The downregulation of NKAα is not because of decreased NKAα mRNA, but due to cotransport of mislocalized rhodopsin and NKAα to lysosomes or autophagolysosomes. In a separate set of experiments, we found that class I mutant rhodopsin, which causes NKAα downregulation, also causes shortening and loss of rod outer segments (OSs); the symptoms frequently observed in the early stages of human RP. Likewise, pharmacological inhibition of NKAα led to shortening and loss of rod OSs. These combined studies suggest that mislocalized rhodopsin leads to photoreceptor dysfunction through disruption of the PM protein homeostasis and compromised NKAα function. This study unveiled a novel role of lysosome-mediated degradation in causing inherited disorders manifested by mislocalization of ciliary receptors.SIGNIFICANCE STATEMENT Retinal ciliopathy is the most common form of inherited blinding disorder frequently manifesting rhodopsin mislocalization. Our understanding of the relationships between rhodopsin mislocalization and photoreceptor dysfunction/degeneration has been far from complete. This study uncovers a hitherto uncharacterized consequence of rhodopsin mislocalization: the activation of the lysosomal pathway, which negatively regulates the amount of the sodium-potassium ATPase (NKAα) on the inner segment plasma membrane. On the plasma membrane, mislocalized rhodopsin extracts NKAα and sends it to lysosomes where they are co-degraded. Compromised NKAα function leads to shortening and loss of the photoreceptor outer segments as observed for various inherited blinding disorders. In summary, this study revealed a novel pathogenic mechanism applicable to various forms of blinding disorders caused by rhodopsin mislocalization.


Asunto(s)
Membrana Celular/metabolismo , Homeostasis , Retinitis Pigmentosa/metabolismo , Rodopsina/metabolismo , Animales , Autofagosomas/metabolismo , Femenino , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Lisosomas/metabolismo , Masculino , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/patología , Rodopsina/genética , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Xenopus laevis
2.
FASEB J ; 33(3): 3680-3692, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30462532

RESUMEN

Retinitis pigmentosa is a devastating, blinding disorder that affects 1 in 4000 people worldwide. During the progression of the disorder, phagocytic clearance of dead photoreceptor cell bodies has a protective role by preventing additional retinal damage from accumulation of cellular debris. However, the cells responsible for the clearance remain unidentified. Taking advantage of a mouse model of retinitis pigmentosa ( RhoP23H/P23H), we clarified the roles of Müller glia in the phagocytosis of rod photoreceptor cells. During the early stage of retinal degeneration, Müller glial cells participated in the phagocytosis of dying or dead rod photoreceptors throughout the outer nuclear layer. Nearly 50% of Müller glia engaged in phagocytosis. Among the Müller phagosomes, >90% matured into phagolysosomes. Those observations indicated that Müller glial cells are the primary contributor to phagocytosis. In contrast, macrophages migrate to the inner part of the outer nuclear layer during photoreceptor degeneration, participating in the phagocytosis of a limited population of dying or dead photoreceptor cells. In healthy retinas of wild-type mice, Müller glial cells phagocytosed cell bodies of dead rod photoreceptors albeit at a lower frequency. Taken together, the phagocytic function of Müller glia is responsible for retinal homeostasis and reorganization under normal and pathologic conditions.-Sakami, S., Imanishi, Y., Palczewski, K. Müller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease.


Asunto(s)
Neuroglía/patología , Fagocitosis/fisiología , Retina/patología , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/patología , Animales , Modelos Animales de Enfermedad , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Retinitis Pigmentosa/patología
3.
J Neurosci ; 33(34): 13621-38, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23966685

RESUMEN

Rhodopsin is a cilia-specific GPCR essential for vision. Rhodopsin mislocalization is associated with blinding diseases called retinal ciliopathies. The mechanism by which rhodopsin mislocalizes in rod photoreceptor neurons is not well understood. Therefore, we investigated the roles of trafficking signals in rhodopsin mislocalization. Rhodopsin and its truncation mutants were fused to a photoconvertible fluorescent protein, Dendra2, and expressed in Xenopus laevis rod photoreceptors. Photoconversion of Dendra2 causes a color change from green to red, enabling visualization of the dynamic events associated with rhodopsin trafficking and renewal. We found that rhodopsin mislocalization is a facilitated process for which a signal located within 322-326 aa (CCGKN) is essential. An additional signal within 327-336 aa further facilitated the mislocalization. This collective mistrafficking signal confers toxicity to rhodopsin and causes mislocalization when the VXPX cilia-targeting motif is absent. We also determined that the VXPX motif neutralizes this mistrafficking signal, enhances ciliary targeting at least 10-fold, and accelerates trafficking of post-Golgi vesicular structures. In the absence of the VXPX motif, mislocalized rhodopsin is actively cleared through secretion of vesicles into the extracellular milieu. Therefore, this study unveiled the multiple roles of trafficking signals in rhodopsin localization and renewal.


Asunto(s)
Transporte de Proteínas/genética , Receptores Acoplados a Proteínas G/metabolismo , Rodopsina/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Anuros , Ojo/anatomía & histología , Femenino , Regulación de la Expresión Génica/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Modelos Moleculares , Mutación/genética , Técnicas de Cultivo de Órganos , Estimulación Luminosa , Unión Proteica , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/genética , Retina/citología , Retina/metabolismo , Retina/ultraestructura , Rodopsina/genética , Transducción de Señal/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Xenopus laevis
4.
J Biol Chem ; 281(49): 37697-704, 2006 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-17032653

RESUMEN

RDH12 has been suggested to be one of the retinol dehydrogenases (RDH) involved in the vitamin A recycling system (visual cycle) in the eye. Loss of function mutations in the RDH12 gene were recently reported to be associated with autosomal recessive childhood-onset severe retinal dystrophy. Here we show that RDH12 localizes to the photoreceptor inner segments and that deletion of this gene in mice slows the kinetics of all-trans-retinal reduction, delaying dark adaptation. However, accelerated 11-cis-retinal production and increased susceptibility to light-induced photoreceptor apoptosis were also observed in Rdh12(-/-) mice, suggesting that RDH12 plays a unique, nonredundant role in the photoreceptor inner segments to regulate the flow of retinoids in the eye. Thus, severe visual impairments of individuals with null mutations in RDH12 may likely be caused by light damage(1).


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Degeneración Retiniana/enzimología , Oxidorreductasas de Alcohol/deficiencia , Oxidorreductasas de Alcohol/genética , Animales , Secuencia de Bases , Cartilla de ADN/genética , Electrorretinografía , Femenino , Humanos , Luz/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Células Fotorreceptoras de Vertebrados/efectos de la radiación , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Degeneración Retiniana/prevención & control , Retinoides/metabolismo
5.
PLoS Med ; 2(11): e333, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16250670

RESUMEN

BACKGROUND: Leber congenital amaurosis (LCA), a heterogeneous early-onset retinal dystrophy, accounts for approximately 15% of inherited congenital blindness. One cause of LCA is loss of the enzyme lecithin:retinol acyl transferase (LRAT), which is required for regeneration of the visual photopigment in the retina. METHODS AND FINDINGS: An animal model of LCA, the Lrat-/- mouse, recapitulates clinical features of the human disease. Here, we report that two interventions--intraocular gene therapy and oral pharmacologic treatment with novel retinoid compounds--each restore retinal function to Lrat-/- mice. Gene therapy using intraocular injection of recombinant adeno-associated virus carrying the Lrat gene successfully restored electroretinographic responses to approximately 50% of wild-type levels (p < 0.05 versus wild-type and knockout controls), and pupillary light responses (PLRs) of Lrat-/- mice increased approximately 2.5 log units (p < 0.05). Pharmacological intervention with orally administered pro-drugs 9-cis-retinyl acetate and 9-cis-retinyl succinate (which chemically bypass the LRAT-catalyzed step in chromophore regeneration) also caused long-lasting restoration of retinal function in LRAT-deficient mice and increased ERG response from approximately 5% of wild-type levels in Lrat-/- mice to approximately 50% of wild-type levels in treated Lrat-/- mice (p < 0.05 versus wild-type and knockout controls). The interventions produced markedly increased levels of visual pigment from undetectable levels to 600 pmoles per eye in retinoid treated mice, and approximately 1,000-fold improvements in PLR and electroretinogram sensitivity. The techniques were complementary when combined. CONCLUSION: Intraocular gene therapy and pharmacologic bypass provide highly effective and complementary means for restoring retinal function in this animal model of human hereditary blindness. These complementary methods offer hope of developing treatment to restore vision in humans with certain forms of hereditary congenital blindness.


Asunto(s)
Aciltransferasas/genética , Ceguera/tratamiento farmacológico , Ceguera/genética , Terapia Genética , Atrofia Óptica Hereditaria de Leber/tratamiento farmacológico , Atrofia Óptica Hereditaria de Leber/genética , Profármacos/farmacología , Vitamina A/análogos & derivados , Adenoviridae/genética , Administración Oral , Animales , Modelos Animales de Enfermedad , Diterpenos , Vectores Genéticos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Profármacos/administración & dosificación , Profármacos/uso terapéutico , Pupila/fisiología , Pigmentos Retinianos/análisis , Ésteres de Retinilo , Vitamina A/administración & dosificación , Vitamina A/farmacología , Vitamina A/uso terapéutico
6.
J Biol Chem ; 280(19): 18822-32, 2005 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-15755727

RESUMEN

The retinoid cycle is a recycling system that replenishes the 11-cis-retinal chromophore of rhodopsin and cone pigments. Photoreceptor-specific retinol dehydrogenase (prRDH) catalyzes reduction of all-trans-retinal to all-trans-retinol and is thought to be a key enzyme in the retinoid cycle. We disrupted mouse prRDH (human gene symbol RDH8) gene expression by targeted recombination and generated a homozygous prRDH knock-out (prRDH-/-) mouse. Histological analysis and electron microscopy of retinas from 6- to 8-week-old prRDH-/- mice revealed no structural differences of the photoreceptors or inner retina. For brief light exposure, absence of prRDH did not affect the rate of 11-cis-retinal regeneration or the decay of Meta II, the activated form of rhodopsin. Absence of prRDH, however, caused significant accumulation of all-trans-retinal following exposure to bright lights and delayed recovery of rod function as measured by electroretinograms and single cell recordings. Retention of all-trans-retinal resulted in slight overproduction of A2E, a condensation product of all-trans-retinal and phosphatidylethanolamine. We conclude that prRDH is an enzyme that catalyzes reduction of all-trans-retinal in the rod outer segment, most noticeably at higher light intensities and prolonged illumination, but is not an essential enzyme of the retinoid cycle.


Asunto(s)
Oxidorreductasas de Alcohol/fisiología , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Retinoides/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Animales , Southern Blotting , Catálisis , Línea Celular , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , ADN Complementario/metabolismo , Electroforesis en Gel de Poliacrilamida , Electrorretinografía , Ojo/metabolismo , Vectores Genéticos , Genotipo , Humanos , Immunoblotting , Inmunohistoquímica , Insectos , Cinética , Luz , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Modelos Químicos , Modelos Genéticos , Mutación , Fosfatidiletanolaminas/metabolismo , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo , Recombinación Genética , Retinaldehído/química , Retinoides/química , Rodopsina/química , Rodopsina/metabolismo , Factores de Tiempo , Transgenes , Vitamina A/metabolismo
7.
Nat Neurosci ; 7(10): 1079-87, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15452577

RESUMEN

CaBP1-8 are neuronal Ca(2+)-binding proteins with similarity to calmodulin (CaM). Here we show that CaBP4 is specifically expressed in photoreceptors, where it is localized to synaptic terminals. The outer plexiform layer, which contains the photoreceptor synapses with secondary neurons, was thinner in the Cabp4(-/-) mice than in control mice. Cabp4(-/-) retinas also had ectopic synapses originating from rod bipolar and horizontal cells tha HJt extended into the outer nuclear layer. Responses of Cabp4(-/-) rod bipolars were reduced in sensitivity about 100-fold. Electroretinograms (ERGs) indicated a reduction in cone and rod synaptic function. The phenotype of Cabp4(-/-) mice shares similarities with that of incomplete congenital stationary night blindness (CSNB2) patients. CaBP4 directly associated with the C-terminal domain of the Ca(v)1.4 alpha(1)-subunit and shifted the activation of Ca(v)1.4 to hyperpolarized voltages in transfected cells. These observations indicate that CaBP4 is important for normal synaptic function, probably through regulation of Ca(2+) influx and neurotransmitter release in photoreceptor synaptic terminals.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Fotorreceptoras/metabolismo , Retina/anomalías , Sinapsis/metabolismo , Secuencia de Aminoácidos/genética , Animales , Secuencia de Bases/genética , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio Tipo L/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/aislamiento & purificación , Línea Celular , Coristoma/genética , Coristoma/metabolismo , Coristoma/patología , ADN Complementario/análisis , ADN Complementario/genética , Humanos , Potenciales de la Membrana/genética , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/aislamiento & purificación , Neurotransmisores/metabolismo , Ceguera Nocturna/genética , Ceguera Nocturna/metabolismo , Células Fotorreceptoras/ultraestructura , Retina/metabolismo , Retina/ultraestructura , Sinapsis/ultraestructura , Transmisión Sináptica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA