Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Immunol ; 8: 1551, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29213269

RESUMEN

BACKGROUND: Heterologous prime-boost vaccination with chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) encoding multiple epitope string thrombospondin-related adhesion protein (ME-TRAP) has shown acceptable safety and promising immunogenicity in African adult and pediatric populations. If licensed, this vaccine could be given to infants receiving routine childhood immunizations. We therefore evaluated responses to ChAd63 MVA ME-TRAP when co-administered with routine Expanded Program on Immunization (EPI) vaccines. METHODS: We enrolled 65 Gambian infants and neonates, aged 16, 8, or 1 week at first vaccination and randomized them to receive either ME-TRAP and EPI vaccines or EPI vaccines only. Safety was assessed by the description of vaccine-related adverse events (AEs). Immunogenicity was evaluated using IFNγ enzyme-linked immunospot, whole-blood flow cytometry, and anti-TRAP IgG ELISA. Serology was performed to confirm all infants achieved protective titers to EPI vaccines. RESULTS: The vaccines were well tolerated in all age groups with no vaccine-related serious AEs. High-level TRAP-specific IgG and T cell responses were generated after boosting with MVA. CD8+ T cell responses, previously found to correlate with protection, were induced in all groups. Antibody responses to EPI vaccines were not altered significantly. CONCLUSION: Malaria vectored prime-boost vaccines co-administered with routine childhood immunizations were well tolerated. Potent humoral and cellular immunity induced by ChAd63 MVA ME-TRAP did not reduce the immunogenicity of co-administered EPI vaccines, supporting further evaluation of this regimen in infant populations. CLINICAL TRIAL REGISTRATION: The clinical trial was registered on http://Clinicaltrials.gov (NCT02083887) and the Pan-African Clinical Trials Registry (PACTR201402000749217).

2.
PLoS One ; 11(12): e0167951, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27978537

RESUMEN

Malaria transmission is in decline in some parts of Africa, partly due to the scaling up of control measures. If the goal of elimination is to be achieved, additional control measures including an effective and durable vaccine will be required. Studies utilising the prime-boost approach to deliver viral vectors encoding the pre-erythrocytic antigen ME-TRAP (multiple epitope thrombospondin-related adhesion protein) have shown promising safety, immunogenicity and efficacy in sporozoite challenge studies. More recently, a study in Kenyan adults, similar to that reported here, showed substantial efficacy against P. falciparum infection. One hundred and twenty healthy male volunteers, living in a malaria endemic area of Senegal were randomised to receive either the Chimpanzee adenovirus (ChAd63) ME-TRAP as prime vaccination, followed eight weeks later by modified vaccinia Ankara (MVA) also encoding ME-TRAP as booster, or two doses of anti-rabies vaccine as a comparator. Prior to follow-up, antimalarials were administered to clear parasitaemia and then participants were monitored by PCR for malaria infection for eight weeks. The primary endpoint was time-to-infection with P. falciparum malaria, determined by two consecutive positive PCR results. Secondary endpoints included adverse event reporting, measures of cellular and humoral immunogenicity and a meta-analysis of combined vaccine efficacy with the parallel study in Kenyan adults.We show that this pre-erythrocytic malaria vaccine is safe and induces significant immunogenicity, with a peak T-cell response at seven days after boosting of 932 Spot Forming Cells (SFC)/106 Peripheral Blood Mononuclear Cells(PBMC) compared to 57 SFC/ 106 PBMCs in the control group. However, a vaccine efficacy was not observed: 12 of 57 ME-TRAP vaccinees became PCR positive during the intensive monitoring period as compared to 13 of the 58 controls (P = 0.80). This trial confirms that vaccine efficacy against malaria infection in adults may be rapidly assessed using this efficient and cost-effective clinical trial design. Further efficacy evaluation of this vectored candidate vaccine approach in other malaria transmission settings and age-de-escalation into the main target age groups for a malaria vaccine is in progress.


Asunto(s)
Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/inmunología , Adenovirus de los Simios/genética , Adulto , Antimaláricos/uso terapéutico , Humanos , Vacunas contra la Malaria/efectos adversos , Malaria Falciparum/genética , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/genética , Senegal , Vacunación/efectos adversos , Vacunación/métodos , Virus Vaccinia/genética
3.
Mol Ther ; 24(8): 1470-7, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27109630

RESUMEN

Malaria remains a significant global health burden and a vaccine would make a substantial contribution to malaria control. Chimpanzee Adenovirus 63 Modified Vaccinia Ankara Multiple epitope thrombospondin adhesion protein (ME-TRAP) and vaccination has shown significant efficacy against malaria sporozoite challenge in malaria-naive European volunteers and against malaria infection in Kenyan adults. Infants are the target age group for malaria vaccination; however, no studies have yet assessed T-cell responses in children and infants. We enrolled 138 Gambian and Burkinabe children in four different age-groups: 2-6 years old in The Gambia; 5-17 months old in Burkina Faso; 5-12 months old, and also 10 weeks old, in The Gambia; and evaluated the safety and immunogenicity of Chimpanzee Adenovirus 63 Modified Vaccinia Ankara ME-TRAP heterologous prime-boost immunization. The vaccines were well tolerated in all age groups with no vaccine-related serious adverse events. T-cell responses to vaccination peaked 7 days after boosting with Modified Vaccinia Ankara, with T-cell responses highest in 10 week-old infants. Heterologous prime-boost immunization with Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara ME-TRAP was well tolerated in infants and children, inducing strong T-cell responses. We identify an approach that induces potent T-cell responses in infants, which may be useful for preventing other infectious diseases requiring cellular immunity.


Asunto(s)
Adenovirus de los Simios , Epítopos , Vectores Genéticos , Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Virus Vaccinia , África Occidental/epidemiología , Animales , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Niño , Preescolar , Ensayo de Immunospot Ligado a Enzimas , Epítopos/inmunología , Gambia , Vectores Genéticos/efectos adversos , Humanos , Inmunización Secundaria , Lactante , Recién Nacido , Malaria/epidemiología , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/efectos adversos , Evaluación de Resultado en la Atención de Salud
4.
Lancet Infect Dis ; 16(1): 31-42, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26546548

RESUMEN

BACKGROUND: The 2014 west African Zaire Ebola virus epidemic prompted worldwide partners to accelerate clinical development of replication-defective chimpanzee adenovirus 3 vector vaccine expressing Zaire Ebola virus glycoprotein (ChAd3-EBO-Z). We aimed to investigate the safety, tolerability, and immunogenicity of ChAd3-EBO-Z in Malian and US adults, and assess the effect of boosting of Malians with modified vaccinia Ankara expressing Zaire Ebola virus glycoprotein and other filovirus antigens (MVA-BN-Filo). METHODS: In the phase 1, single-blind, randomised trial of ChAd3-EBO-Z in the USA, we recruited adults aged 18-65 years from the University of Maryland medical community and the Baltimore community. In the phase 1b, open-label and double-blind, dose-escalation trial of ChAd3-EBO-Z in Mali, we recruited adults 18-50 years of age from six hospitals and health centres in Bamako (Mali), some of whom were also eligible for a nested, randomised, double-blind, placebo-controlled trial of MVA-BN-Filo. For randomised segments of the Malian trial and for the US trial, we randomly allocated participants (1:1; block size of six [Malian] or four [US]; ARB produced computer-generated randomisation lists; clinical staff did randomisation) to different single doses of intramuscular immunisation with ChAd3-EBO-Z: Malians received 1 × 10(10) viral particle units (pu), 2·5 × 10(10) pu, 5 × 10(10) pu, or 1 × 10(11) pu; US participants received 1 × 10(10) pu or 1 × 10(11) pu. We randomly allocated Malians in the nested trial (1:1) to receive a single dose of 2 × 10(8) plaque-forming units of MVA-BN-Filo or saline placebo. In the double-blind segments of the Malian trial, investigators, clinical staff, participants, and immunology laboratory staff were masked, but the study pharmacist (MK), vaccine administrator, and study statistician (ARB) were unmasked. In the US trial, investigators were not masked, but participants were. Analyses were per protocol. The primary outcome was safety, measured with occurrence of adverse events for 7 days after vaccination. Both trials are registered with ClinicalTrials.gov, numbers NCT02231866 (US) and NCT02267109 (Malian). FINDINGS: Between Oct 8, 2014, and Feb 16, 2015, we randomly allocated 91 participants in Mali (ten [11%] to 1 × 10(10) pu, 35 [38%] to 2·5 × 10(10) pu, 35 [38%] to 5 × 10(10) pu, and 11 [12%] to 1 × 10(11) pu) and 20 in the USA (ten [50%] to 1 × 10(10) pu and ten [50%] to 1 × 10(11) pu), and boosted 52 Malians with MVA-BN-Filo (27 [52%]) or saline (25 [48%]). We identified no safety concerns with either vaccine: seven (8%) of 91 participants in Mali (five [5%] received 5 × 10(10) and two [2%] received 1 × 10(11) pu) and four (20%) of 20 in the USA (all received 1 × 10(11) pu) given ChAd3-EBO-Z had fever lasting for less than 24 h, and 15 (56%) of 27 Malians boosted with MVA-BN-Filo had injection-site pain or tenderness. INTERPRETATION: 1 × 10(11) pu single-dose ChAd3-EBO-Z could suffice for phase 3 efficacy trials of ring-vaccination containment needing short-term, high-level protection to interrupt transmission. MVA-BN-Filo boosting, although a complex regimen, could confer long-lived protection if needed (eg, for health-care workers). FUNDING: Wellcome Trust, Medical Research Council UK, Department for International Development UK, National Cancer Institute, Frederick National Laboratory for Cancer Research, Federal Funds from National Institute of Allergy and Infectious Diseases.


Asunto(s)
Vacunas contra el Virus del Ébola/administración & dosificación , Fiebre Hemorrágica Ebola/prevención & control , Inmunización Secundaria , Adolescente , Adulto , Anciano , Animales , Antígenos Virales/inmunología , Relación Dosis-Respuesta Inmunológica , Método Doble Ciego , Femenino , Glicoproteínas/inmunología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Humanos , Masculino , Malí , Persona de Mediana Edad , Método Simple Ciego , Estados Unidos , Adulto Joven
5.
N Engl J Med ; 374(17): 1635-46, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25629663

RESUMEN

BACKGROUND: The West African outbreak of Ebola virus disease that peaked in 2014 has caused more than 11,000 deaths. The development of an effective Ebola vaccine is a priority for control of a future outbreak. METHODS: In this phase 1 study, we administered a single dose of the chimpanzee adenovirus 3 (ChAd3) vaccine encoding the surface glycoprotein of Zaire ebolavirus (ZEBOV) to 60 healthy adult volunteers in Oxford, United Kingdom. The vaccine was administered in three dose levels--1×10(10) viral particles, 2.5×10(10) viral particles, and 5×10(10) viral particles--with 20 participants in each group. We then assessed the effect of adding a booster dose of a modified vaccinia Ankara (MVA) strain, encoding the same Ebola virus glycoprotein, in 30 of the 60 participants and evaluated a reduced prime-boost interval in another 16 participants. We also compared antibody responses to inactivated whole Ebola virus virions and neutralizing antibody activity with those observed in phase 1 studies of a recombinant vesicular stomatitis virus-based vaccine expressing a ZEBOV glycoprotein (rVSV-ZEBOV) to determine relative potency and assess durability. RESULTS: No safety concerns were identified at any of the dose levels studied. Four weeks after immunization with the ChAd3 vaccine, ZEBOV-specific antibody responses were similar to those induced by rVSV-ZEBOV vaccination, with a geometric mean titer of 752 and 921, respectively. ZEBOV neutralization activity was also similar with the two vaccines (geometric mean titer, 14.9 and 22.2, respectively). Boosting with the MVA vector increased virus-specific antibodies by a factor of 12 (geometric mean titer, 9007) and increased glycoprotein-specific CD8+ T cells by a factor of 5. Significant increases in neutralizing antibodies were seen after boosting in all 30 participants (geometric mean titer, 139; P<0.001). Virus-specific antibody responses in participants primed with ChAd3 remained positive 6 months after vaccination (geometric mean titer, 758) but were significantly higher in those who had received the MVA booster (geometric mean titer, 1750; P<0.001). CONCLUSIONS: The ChAd3 vaccine boosted with MVA elicited B-cell and T-cell immune responses to ZEBOV that were superior to those induced by the ChAd3 vaccine alone. (Funded by the Wellcome Trust and others; ClinicalTrials.gov number, NCT02240875.).


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Adenovirus de los Simios/inmunología , Adulto , Animales , Anticuerpos Antivirales/sangre , Linfocitos B/fisiología , Citocinas/sangre , Vacunas contra el Virus del Ébola/administración & dosificación , Femenino , Fiebre Hemorrágica Ebola/inmunología , Humanos , Inmunidad Celular , Inmunización Secundaria , Masculino , Persona de Mediana Edad , Pan troglodytes , Linfocitos T/fisiología , Vaccinia , Adulto Joven
6.
Sci Transl Med ; 7(286): 286re5, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-25947165

RESUMEN

Protective immunity to the liver stage of the malaria parasite can be conferred by vaccine-induced T cells, but no subunit vaccination approach based on cellular immunity has shown efficacy in field studies. We randomly allocated 121 healthy adult male volunteers in Kilifi, Kenya, to vaccination with the recombinant viral vectors chimpanzee adenovirus 63 (ChAd63) and modified vaccinia Ankara (MVA), both encoding the malaria peptide sequence ME-TRAP (the multiple epitope string and thrombospondin-related adhesion protein), or to vaccination with rabies vaccine as a control. We gave antimalarials to clear parasitemia and conducted PCR (polymerase chain reaction) analysis on blood samples three times a week to identify infection with the malaria parasite Plasmodium falciparum. On Cox regression, vaccination reduced the risk of infection by 67% [95% confidence interval (CI), 33 to 83%; P = 0.002] during 8 weeks of monitoring. T cell responses to TRAP peptides 21 to 30 were significantly associated with protection (hazard ratio, 0.24; 95% CI, 0.08 to 0.75; P = 0.016).


Asunto(s)
Adenovirus de los Simios/inmunología , Esquemas de Inmunización , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/prevención & control , Proteínas Protozoarias/inmunología , Virus Vaccinia/inmunología , Adulto , Algoritmos , Animales , Epítopos/inmunología , Genotipo , Humanos , Estimación de Kaplan-Meier , Kenia , Masculino , Pan troglodytes , Plasmodium falciparum , Reacción en Cadena de la Polimerasa , Modelos de Riesgos Proporcionales , Adulto Joven
7.
Mol Ther ; 22(11): 1992-2003, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24930599

RESUMEN

To induce a deployable level of efficacy, a successful malaria vaccine would likely benefit from both potent cellular and humoral immunity. These requirements are met by a heterologous prime-boost immunization strategy employing a chimpanzee adenovirus vector followed by modified vaccinia Ankara (MVA), both encoding the pre-erythrocytic malaria antigen ME-thrombospondin-related adhesive protein (TRAP), with high immunogenicity and significant efficacy in UK adults. We undertook two phase 1b open-label studies in adults in Kenya and The Gambia in areas of similar seasonal malaria transmission dynamics and have previously reported safety and basic immunogenicity data. We now report flow cytometry and additional interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) data characterizing pre-existing and induced cellular immunity as well as anti-TRAP IgG responses. T-cell responses induced by vaccination averaged 1,254 spot-forming cells (SFC) per million peripheral blood mononuclear cells (PBMC) across both trials and flow cytometry revealed cytokine production from both CD4(+) and CD8(+) T cells with the frequency of CD8(+) IFN-γ-secreting monofunctional T cells (previously shown to associate with vaccine efficacy) particularly high in Kenyan adults. Immunization with ChAd63 and MVA ME-TRAP induced strong cellular and humoral immune responses in adults living in two malaria-endemic regions of Africa. This prime-boost approach targeting the pre-erythrocytic stage of the malaria life-cycle is now being assessed for efficacy in a target population.


Asunto(s)
Adenovirus de los Simios/genética , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/prevención & control , Proteínas Protozoarias/inmunología , Virus Vaccinia/genética , Adulto , Enfermedades Endémicas , Gambia/epidemiología , Humanos , Inmunización Secundaria , Kenia/epidemiología , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Malaria Falciparum/epidemiología , Proteínas Protozoarias/genética , Linfocitos T/inmunología , Reino Unido
9.
PLoS One ; 8(3): e57726, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23526949

RESUMEN

BACKGROUND: Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified vaccinia Virus Ankara (MVA) vectored vaccines is a strategy recently shown to be capable of inducing strong cell mediated responses against several antigens from the malaria parasite. ChAd63-MVA expressing the Plasmodium falciparum pre-erythrocytic antigen ME-TRAP (multiple epitope string with thrombospondin-related adhesion protein) is a leading malaria vaccine candidate, capable of inducing sterile protection in malaria naïve adults following controlled human malaria infection (CHMI). METHODOLOGY: We conducted two Phase Ib dose escalation clinical trials assessing the safety and immunogenicity of ChAd63-MVA ME-TRAP in 46 healthy malaria exposed adults in two African countries with similar malaria transmission patterns. RESULTS: ChAd63-MVA ME-TRAP was shown to be safe and immunogenic, inducing high-level T cell responses (median >1300 SFU/million PBMC). CONCLUSIONS: ChAd63-MVA ME-TRAP is a safe and highly immunogenic vaccine regimen in adults with prior exposure to malaria. Further clinical trials to assess safety and immunogenicity in children and infants and protective efficacy in the field are now warranted. TRIAL REGISTRATION: Pactr.org PACTR2010020001771828 Pactr.org PACTR201008000221638 ClinicalTrials.gov NCT01373879 NCT01373879 ClinicalTrials.gov NCT01379430 NCT01379430.


Asunto(s)
Vacunas contra la Malaria/administración & dosificación , Plasmodium falciparum/inmunología , Adenovirus de los Simios/genética , Adulto , Antígenos de Protozoos/genética , Gambia , Vectores Genéticos , Humanos , Inmunización Secundaria , Interferón gamma/sangre , Kenia , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Masculino , Persona de Mediana Edad , Plasmodium falciparum/genética , Linfocitos T/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Virus Vaccinia/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA