Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Asunto principal
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(21): 15130-15142, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38525924

RESUMEN

High-resolution carbon K-edge X-ray photoelectron, X-ray absorption, non-resonant and resonant Auger spectra are presented of gas phase trans-1,3-butadiene alongside a detailed theoretical analysis utilising nuclear ensemble approaches and vibronic models to simulate the spectroscopic observables. The resonant Auger spectra recorded across the first pre-edge band reveal a complex evolution of different electronic states which remain relatively well-localised on the edge or central carbon sites. The results demonstrate the sensitivity of the resonant Auger observables to the weighted contributions from multiple electronic states. The gradually evolving spectral features can be accurately and feasibly simulated within nuclear ensemble methods and interpreted with the population analysis.

2.
Chem Sci ; 11(19): 5089-5097, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-34122966

RESUMEN

Chemical processing in the stratospheres of the gas giants is driven by incident vacuum ultraviolet (VUV) light. Ethane is an important constituent in the atmospheres of the gas giants in our solar system. The present work describes translational spectroscopy studies of the VUV photochemistry of ethane using tuneable radiation in the wavelength range 112 ≤ λ ≤ 126 nm from a free electron laser and event-triggered, fast-framing, multi-mass imaging detection methods. Contributions from at least five primary photofragmentation pathways yielding CH2, CH3 and/or H atom products are demonstrated and interpreted in terms of unimolecular decay following rapid non-adiabatic coupling to the ground state potential energy surface. These data serve to highlight parallels with methane photochemistry and limitations in contemporary models of the photoinduced stratospheric chemistry of the gas giants. The work identifies additional photochemical reactions that require incorporation into next generation extraterrestrial atmospheric chemistry models which should help rationalise hitherto unexplained aspects of the atmospheric ethane/acetylene ratios revealed by the Cassini-Huygens fly-by of Jupiter.

3.
Phys Chem Chem Phys ; 20(30): 20033-20042, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30022211

RESUMEN

The photophysical dynamics of 2-aminopurine riboside (2APr) in CHCl3 have been studied following excitation at λpump = 310 nm by means of femtosecond transient vibrational absorption spectroscopy (TVAS) aided by quantum chemical density functional theory (DFT) and ab initio calculations. The experiments identified numerous vibrational marker bands in the regions of the NH2 stretch and the 2AP ring vibrations which could be assigned to the bleach of the S0 electronic ground state (GS) and to transient populations in the 1ππ* and 3ππ* excited electronic states. The temporal evolution of the transient vibrational bands shows that the decay of the 1ππ* population is accompanied by a partial recovery of the GS and a concurrent population of the 3ππ* state with a time constant of τ2 = 740 ± 15 ps. The ensuing electronic relaxation is concluded to proceed via the 1nπ* state as intermediate state. The absence of observable transient vibrational bands of this state hints at an upper limit for its lifetime of τ < 100 ps. The triplet quantum yield is found to be φT = 0.42 ± 0.07.


Asunto(s)
Adenosina/análogos & derivados , Adenosina/química , Estructura Molecular , Teoría Cuántica , Análisis Espectral/métodos , Factores de Tiempo , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA