Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Genes (Basel) ; 14(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37239394

RESUMEN

Progressive corneal opacification can result from multiple etiologies, including corneal dystrophies or systemic and genetic diseases. We describe a novel syndrome featuring progressive epithelial and anterior stromal opacification in a brother and sister and their mildly affected father, with all three family members having sensorineural hearing loss and two also with tracheomalacia/laryngomalacia. All carried a 1.2 Mb deletion at chromosome 13q12.11, with no other noteworthy co-segregating variants identified on clinical exome or chromosomal microarray. RNAseq analysis from an affected corneal epithelial sample from the proband's brother revealed downregulation of XPO4, IFT88, ZDHHC20, LATS2, SAP18, and EEF1AKMT1 within the microdeletion interval, with no notable effect on the expression of nearby genes. Pathway analysis showed upregulation of collagen metabolism and extracellular matrix (ECM) formation/maintenance, with no significantly down-regulated pathways. Analysis of overlapping deletions/variants demonstrated that deleterious variants in XPO4 were found in patients with laryngomalacia and sensorineural hearing loss, with the latter phenotype also being a feature of variants in the partially overlapping DFNB1 locus, yet none of these had reported corneal phenotypes. Together, these data define a novel microdeletion-associated syndromic progressive corneal opacification and suggest that a combination of genes within the microdeletion may contribute to ECM dysregulation leading to pathogenesis.


Asunto(s)
Pérdida Auditiva Sensorineural , Laringomalacia , Masculino , Femenino , Humanos , Pérdida Auditiva Sensorineural/genética , Síndrome , Hermanos , Análisis por Micromatrices , Proteínas Serina-Treonina Quinasas , Proteínas Supresoras de Tumor
2.
Med ; 2(7): 814-835, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35291351

RESUMEN

BACKGROUND: Recombinant leptin therapy reverses nonalcoholic steatohepatitis (NASH) in leptin-deficient lipodystrophy. We inquired if leptin therapy would improve nonalcoholic steatohepatitis in more common forms of this heterogeneous condition. METHODS: Nine male patients with relative leptin deficiency (level < 25th percentile of body mass index- and gender-matched United States population) and biopsy-proven NASH and 23 patients with partial lipodystrophy and NASH were recruited for two distinctive open-label trials. Participants received leptin therapy in the form of metreleptin for 12 months. The primary endpoints were the global nonalcoholic steatohepatitis scores from paired liver biopsies scored blindly. FINDINGS: Of 9 participants recruited in the relative leptin deficiency treatment study, 7 completed 12-months of therapy. Mean global NASH scores were reduced from 8 ± 3 to 5 ± 2 (range: from 1 to 6, P = 0.004). In the partial lipodystrophy study, 19 of 22 subjects completed 12 months of treatment, and 18 completed a second liver biopsy. Global NASH scores also reduced significantly from 6 ± 2 to 5 ± 2 (range: from -2 to 4, P = 0.008). In both studies, the predominant changes were in steatosis and hepatic injury scores. CONCLUSION: Our findings show that patients with NASH associated with both relative leptin deficiency and partial lipodystrophy have reductions in hepatic steatosis and injury in response to exogenous leptin therapy. Moreover, leptin deficiency may have regulatory effects in mediating fat deposition and ensuing injury in the liver.TRIAL REGISTRATION. ClinicalTrials.gov NCT00596934 and NCT01679197.


Asunto(s)
Lipodistrofia , Enfermedad del Hígado Graso no Alcohólico , Humanos , Leptina/análogos & derivados , Leptina/uso terapéutico , Lipodistrofia/tratamiento farmacológico , Masculino , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
3.
Sci Adv ; 6(49)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268356

RESUMEN

Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A (H3F3A) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation.


Asunto(s)
Histonas , Enfermedades Neurodegenerativas , Animales , Factores de Transcripción Forkhead/genética , Mutación de Línea Germinal , Histonas/genética , Histonas/metabolismo , Humanos , Enfermedades Neurodegenerativas/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
4.
PLoS One ; 15(10): e0240169, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33027304

RESUMEN

We have created the immunodeficient SRG rat, a Sprague-Dawley Rag2/Il2rg double knockout that lacks mature B cells, T cells, and circulating NK cells. This model has been tested and validated for use in oncology (SRG OncoRat®). The SRG rat demonstrates efficient tumor take rates and growth kinetics with different human cancer cell lines and PDXs. Although multiple immunodeficient rodent strains are available, some important human cancer cell lines exhibit poor tumor growth and high variability in those models. The VCaP prostate cancer model is one such cell line that engrafts unreliably and grows irregularly in existing models but displays over 90% engraftment rate in the SRG rat with uniform growth kinetics. Since rats can support much larger tumors than mice, the SRG rat is an attractive host for PDX establishment. Surgically resected NSCLC tissue from nine patients were implanted in SRG rats, seven of which engrafted and grew for an overall success rate of 78%. These developed into a large tumor volume, over 20,000 mm3 in the first passage, which would provide an ample source of tissue for characterization and/or subsequent passage into NSG mice for drug efficacy studies. Molecular characterization and histological analyses were performed for three PDX lines and showed high concordance between passages 1, 2 and 3 (P1, P2, P3), and the original patient sample. Our data suggest the SRG OncoRat is a valuable tool for establishing PDX banks and thus serves as an alternative to current PDX mouse models hindered by low engraftment rates, slow tumor growth kinetics, and multiple passages to develop adequate tissue banks.


Asunto(s)
Subunidad gamma Común de Receptores de Interleucina/genética , Neoplasias Experimentales/patología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Eliminación de Gen , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Experimentales/genética , Ratas , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de Xenoinjerto/normas
5.
Genet Med ; 22(7): 1215-1226, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32376980

RESUMEN

PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies.


Asunto(s)
Discapacidad Intelectual , Transcriptoma , Exoma , Células Germinativas , Humanos , Discapacidad Intelectual/genética , Mutación Missense , Fenotipo , Transcriptoma/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral
6.
Artículo en Inglés | MEDLINE | ID: mdl-31333877

RESUMEN

BACKGROUND: Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) is a rare syndrome with unknown etiology. Metabolic abnormalities are not known to be part of the syndrome. We present one of the oldest cases reported in the literature, who developed severe metabolic abnormalities and hepatic disease suggesting that these features may be part of the syndrome. CASE PRESENTATION: A 27-year-old woman, diagnosed with ROHHAD syndrome at age 15, who previously developed diabetes insipidus, growth hormone deficiency, hyperprolactinemia, and hypothyroidism in her first decade of life. This was followed by insulin resistance, NAFLD, liver fibrosis, and splenomegaly before age 14 years. Her regimen included a short course of growth hormone, and cyclic estrogen and progesterone. Her metabolic deterioration continued despite treatment with metformin. Interestingly, she had a favorable response to liraglutide therapy despite having a centrally mediated cause for her obesity. At age 26, a 1.6 cm lesion was found incidentally in her liver. Liver biopsy showed hepatocellular carcinoma which was successfully treated with radiofrequency ablation. CONCLUSION: Metabolic abnormalities, Insulin resistance and fatty liver disease are potentially part of the ROHHAD syndrome that may develop over time. GLP1 agonists were reasonably effective to treat insulin resistance and hyperphagia. Patients with ROHHAD may benefit from close follow up in regards to liver disease.

7.
Artículo en Inglés | MEDLINE | ID: mdl-29610677

RESUMEN

BACKGROUND: Juvenile dermatomyositis (JDM) is an auto-immune muscle disease which presents with skin manifestations and muscle weakness. At least 10% of the patients with JDM present with acquired lipodystrophy. Laminopathies are caused by mutations in the lamin genes and cover a wide spectrum of diseases including muscular dystrophies and lipodystrophy. The p.T10I LMNA variant is associated with a phenotype of generalized lipodystrophy that has also been called atypical progeroid syndrome. CASE PRESENTATION: A previously healthy female presented with bilateral proximal lower extremity muscle weakness at age 4. She was diagnosed with JDM based on her clinical presentation, laboratory tests and magnetic resonance imaging (MRI). She had subcutaneous fat loss which started in her extremities and progressed to her whole body. At age 7, she had diabetes, hypertriglyceridemia, low leptin levels and low body fat on dual energy X-ray absorptiometry (DEXA) scan, and was diagnosed with acquired generalized lipodystrophy (AGL). Whole exome sequencing (WES) revealed a heterozygous c.29C > T; p.T10I missense pathogenic variant in LMNA, which encodes lamins A and C. Muscle biopsy confirmed JDM rather than muscular dystrophy, showing perifascicular atrophy and perivascular mononuclear cell infiltration. Immunofluroscence of skin fibroblasts confirmed nuclear atypia and fragmentation. CONCLUSIONS: This is a unique case with p.T10I LMNA variant displaying concurrent JDM and AGL. This co-occurrence raises the intriguing possibility that LMNA, and possibly p.T10I, may have a pathogenic role in not only the occurrence of generalized lipodystrophy, but also juvenile dermatomyositis. Careful phenotypic characterization of additional patients with laminopathies as well as individuals with JDM is warranted.

8.
J Clin Endocrinol Metab ; 103(3): 1005-1014, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29267953

RESUMEN

Background: Lamin A/C (LMNA) gene mutations cause a heterogeneous group of progeroid disorders, including Hutchinson-Gilford progeria syndrome, mandibuloacral dysplasia, and atypical progeroid syndrome (APS). Five of the 31 previously reported patients with APS harbored a recurrent de novo heterozygous LMNA p.T10I mutation. All five had generalized lipodystrophy, as well as similar metabolic and clinical features, suggesting a distinct progeroid syndrome. Methods: We report nine new patients and follow-up of two previously reported patients with the heterozygous LMNA p.T10I mutation and compare their clinical and metabolic features with other patients with APS. Results: Compared with other patients with APS, those with the heterozygous LMNA p.T10I mutation were younger in age but had increased prevalence of generalized lipodystrophy, diabetes mellitus, acanthosis nigricans, hypertriglyceridemia, and hepatomegaly, together with higher fasting serum insulin and triglyceride levels and lower serum leptin and high-density lipoprotein cholesterol levels. Prominent clinical features included mottled skin pigmentation, joint contractures, and cardiomyopathy resulting in cardiac transplants in three patients at ages 13, 33, and 47 years. Seven patients received metreleptin therapy for 0.5 to 16 years with all, except one noncompliant patient, showing marked improvement in metabolic complications. Conclusions: Patients with the heterozygous LMNA p.T10I mutation have distinct clinical features and significantly worse metabolic complications compared with other patients with APS as well as patients with Hutchinson-Gilford progeria syndrome. We propose that they be recognized as having generalized lipodystrophy-associated progeroid syndrome. Patients with generalized lipodystrophy-associated progeroid syndrome should undergo careful multisystem assessment at onset and yearly metabolic and cardiac evaluation, as hyperglycemia, hypertriglyceridemia, hepatic steatosis, and cardiomyopathy are the major contributors to morbidity and mortality.


Asunto(s)
Lamina Tipo A/genética , Lipodistrofia Generalizada Congénita/genética , Mutación , Progeria/genética , Absorciometría de Fotón/métodos , Adolescente , Adulto , Antropometría/métodos , Niño , Femenino , Humanos , Lipodistrofia Generalizada Congénita/metabolismo , Lipodistrofia Generalizada Congénita/patología , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Miocardio/patología , Fenotipo , Progeria/metabolismo , Progeria/patología
9.
Clin Endocrinol (Oxf) ; 86(5): 698-707, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28199729

RESUMEN

CONTEXT: Partial lipodystrophy (PL) is associated with metabolic co-morbidities but may go undiagnosed as the disease spectrum is not fully described. OBJECTIVE: The objective of the study was to define disease spectrum in PL using genetic, clinical (historical, morphometric) and laboratory characteristics. DESIGN: Cross-sectional evaluation. PARTICIPANTS: Twenty-three patients (22 with familial, one acquired, 78·3% female, aged 12-64 years) with PL and non-alcoholic fatty liver disease (NAFLD). MEASUREMENTS: Genetic, clinical and laboratory characteristics, body composition indices, liver fat content by magnetic resonance imaging (MRI), histopathological and immunofluorescence examinations of liver biopsies. RESULTS: Seven patients displayed heterozygous pathogenic variants in LMNA. Two related patients had a heterozygous, likely pathogenic novel variant of POLD1 (NM002691·3: c.3199 G>A; p.E1067K). Most patients had high ratios (>1·5) of percentage fat trunk to percentage fat legs (FMR) when compared to reference normals. Liver fat quantified using MR Dixon method was high (11·3 ± 6·3%) and correlated positively with haemoglobin A1c and triglycerides while leg fat by dual-energy X-ray absorptiometry (DEXA) correlated negatively with triglycerides. In addition to known metabolic comorbidities; chronic pain (78·3%), hypertension (56·5%) and mood disorders (52·2%) were highly prevalent. Mean NAFLD Activity Score (NAS) was 5 ± 1 and 78·3% had fibrosis. LMNA-immunofluorescence staining from select patients (including one with the novel POLD1 variant) showed a high degree of nuclear atypia and disorganization. CONCLUSIONS: Partial lipodystrophy is a complex multi-system disorder. Metabolic parameters correlate negatively with extremity fat and positively with liver fat. DEXA-based FMR may prove useful as a diagnostic tool. Nuclear disorganization and atypia may be a common biomarker even in the absence of pathogenic variants in LMNA.


Asunto(s)
Composición Corporal , Lipodistrofia Parcial Familiar/diagnóstico , Lipodistrofia/diagnóstico , Adolescente , Adulto , Niño , Estudios Transversales , Femenino , Humanos , Lipodistrofia/genética , Lipodistrofia/metabolismo , Lipodistrofia/fisiopatología , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/fisiopatología , Masculino , Persona de Mediana Edad , Adulto Joven
10.
JAMA ; 314(9): 913-25, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26325560

RESUMEN

IMPORTANCE: Cancer is caused by a diverse array of somatic and germline genomic aberrations. Advances in genomic sequencing technologies have improved the ability to detect these molecular aberrations with greater sensitivity. However, integrating them into clinical management in an individualized manner has proven challenging. OBJECTIVE: To evaluate the use of integrative clinical sequencing and genetic counseling in the assessment and treatment of children and young adults with cancer. DESIGN, SETTING, AND PARTICIPANTS: Single-site, observational, consecutive case series (May 2012-October 2014) involving 102 children and young adults (mean age, 10.6 years; median age, 11.5 years, range, 0-22 years) with relapsed, refractory, or rare cancer. EXPOSURES: Participants underwent integrative clinical exome (tumor and germline DNA) and transcriptome (tumor RNA) sequencing and genetic counseling. Results were discussed by a precision medicine tumor board, which made recommendations to families and their physicians. MAIN OUTCOMES AND MEASURES: Proportion of patients with potentially actionable findings, results of clinical actions based on integrative clinical sequencing, and estimated proportion of patients or their families at risk of future cancer. RESULTS: Of the 104 screened patients, 102 enrolled with 91 (89%) having adequate tumor tissue to complete sequencing. Only the 91 patients were included in all calculations, including 28 (31%) with hematological malignancies and 63 (69%) with solid tumors. Forty-two patients (46%) had actionable findings that changed their cancer management: 15 of 28 (54%) with hematological malignancies and 27 of 63 (43%) with solid tumors. Individualized actions were taken in 23 of the 91 (25%) based on actionable integrative clinical sequencing findings, including change in treatment for 14 patients (15%) and genetic counseling for future risk for 9 patients (10%). Nine of 91 (10%) of the personalized clinical interventions resulted in ongoing partial clinical remission of 8 to 16 months or helped sustain complete clinical remission of 6 to 21 months. All 9 patients and families with actionable incidental genetic findings agreed to genetic counseling and screening. CONCLUSIONS AND RELEVANCE: In this single-center case series involving young patients with relapsed or refractory cancer, incorporation of integrative clinical sequencing data into clinical management was feasible, revealed potentially actionable findings in 46% of patients, and was associated with change in treatment and family genetic counseling for a small proportion of patients. The lack of a control group limited assessing whether better clinical outcomes resulted from this approach than outcomes that would have occurred with standard care.


Asunto(s)
Asesoramiento Genético , Neoplasias/genética , Análisis de Secuencia de ADN/métodos , Adolescente , Niño , Preescolar , Aberraciones Cromosómicas , Familia , Estudios de Factibilidad , Fusión Génica , Neoplasias Hematológicas/genética , Humanos , Hallazgos Incidentales , Lactante , Recién Nacido , Terapia Molecular Dirigida/métodos , Recurrencia Local de Neoplasia/genética , Neoplasias/terapia , Evaluación de Resultado en la Atención de Salud , Inducción de Remisión , Adulto Joven
11.
J Clin Invest ; 125(6): 2375-84, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25961457

RESUMEN

Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of progressive renal function decline and affects millions of people. In a recent study, 30% of SRNS cases evaluated were the result of monogenic mutations in 1 of 27 different genes. Here, using homozygosity mapping and whole-exome sequencing, we identified recessive mutations in kidney ankyrin repeat-containing protein 1 (KANK1), KANK2, and KANK4 in individuals with nephrotic syndrome. In an independent functional genetic screen of Drosophila cardiac nephrocytes, which are equivalents of mammalian podocytes, we determined that the Drosophila KANK homolog (dKank) is essential for nephrocyte function. RNAi-mediated knockdown of dKank in nephrocytes disrupted slit diaphragm filtration structures and lacuna channel structures. In rats, KANK1, KANK2, and KANK4 all localized to podocytes in glomeruli, and KANK1 partially colocalized with synaptopodin. Knockdown of kank2 in zebrafish recapitulated a nephrotic syndrome phenotype, resulting in proteinuria and podocyte foot process effacement. In rat glomeruli and cultured human podocytes, KANK2 interacted with ARHGDIA, a known regulator of RHO GTPases in podocytes that is dysfunctional in some types of nephrotic syndrome. Knockdown of KANK2 in cultured podocytes increased active GTP-bound RHOA and decreased migration. Together, these data suggest that KANK family genes play evolutionarily conserved roles in podocyte function, likely through regulating RHO GTPase signaling.


Asunto(s)
Mutación , Síndrome Nefrótico , Podocitos , Proteinuria , Proteínas Supresoras de Tumor , Proteínas Adaptadoras Transductoras de Señales , Animales , Línea Celular , Proteínas del Citoesqueleto , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Síndrome Nefrótico/genética , Síndrome Nefrótico/metabolismo , Síndrome Nefrótico/patología , Podocitos/metabolismo , Podocitos/patología , Proteinuria/genética , Proteinuria/metabolismo , Proteinuria/patología , Ratas , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
Kidney Int ; 85(4): 880-7, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24257694

RESUMEN

Rare single-gene disorders cause chronic disease. However, half of the 6000 recessive single gene causes of disease are still unknown. Because recessive disease genes can illuminate, at least in part, disease pathomechanism, their identification offers direct opportunities for improved clinical management and potentially treatment. Rare diseases comprise the majority of chronic kidney disease (CKD) in children but are notoriously difficult to diagnose. Whole-exome resequencing facilitates identification of recessive disease genes. However, its utility is impeded by the large number of genetic variants detected. We here overcome this limitation by combining homozygosity mapping with whole-exome resequencing in 10 sib pairs with a nephronophthisis-related ciliopathy, which represents the most frequent genetic cause of CKD in the first three decades of life. In 7 of 10 sibships with a histologic or ultrasonographic diagnosis of nephronophthisis-related ciliopathy, we detect the causative gene. In six sibships, we identify mutations of known nephronophthisis-related ciliopathy genes, while in two additional sibships we found mutations in the known CKD-causing genes SLC4A1 and AGXT as phenocopies of nephronophthisis-related ciliopathy. Thus, whole-exome resequencing establishes an efficient, noninvasive approach towards early detection and causation-based diagnosis of rare kidney diseases. This approach can be extended to other rare recessive disorders, thereby providing accurate diagnosis and facilitating the study of disease mechanisms.


Asunto(s)
Pruebas Genéticas/métodos , Enfermedades Renales Quísticas/diagnóstico , Enfermedades Renales Quísticas/genética , Adolescente , Adulto , Análisis Mutacional de ADN , Diagnóstico Precoz , Exoma , Genes Recesivos , Humanos , Lactante , Masculino , Mutación , Fenotipo , Adulto Joven
13.
Mol Genet Metab ; 111(1): 4-15, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24239177

RESUMEN

The Hox genes are an evolutionarily conserved family of genes, which encode a class of important transcription factors that function in numerous developmental processes. Following their initial discovery, a substantial amount of information has been gained regarding the roles Hox genes play in various physiologic and pathologic processes. These processes range from a central role in anterior-posterior patterning of the developing embryo to roles in oncogenesis that are yet to be fully elucidated. In vertebrates there are a total of 39 Hox genes divided into 4 separate clusters. Of these, mutations in 10 Hox genes have been found to cause human disorders with significant variation in their inheritance patterns, penetrance, expressivity and mechanism of pathogenesis. This review aims to describe the various phenotypes caused by germline mutation in these 10 Hox genes that cause a human phenotype, with specific emphasis paid to the genotypic and phenotypic differences between allelic disorders. As clinical whole exome and genome sequencing is increasingly utilized in the future, we predict that additional Hox gene mutations will likely be identified to cause distinct human phenotypes. As the known human phenotypes closely resemble gene-specific murine models, we also review the homozygous loss-of-function mouse phenotypes for the 29 Hox genes without a known human disease. This review will aid clinicians in identifying and caring for patients affected with a known Hox gene disorder and help recognize the potential for novel mutations in patients with phenotypes informed by mouse knockout studies.


Asunto(s)
Anomalías Congénitas/genética , Genes Homeobox , Enfermedades Genéticas Congénitas/genética , Mutación de Línea Germinal , Animales , Modelos Animales de Enfermedad , Exoma , Variación Genética , Genoma Humano , Genotipo , Humanos , Ratones , Biología Molecular , Familia de Multigenes , Penetrancia , Fenotipo , Síndrome , Vertebrados/genética
14.
PLoS Genet ; 9(12): e1003967, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24339789

RESUMEN

Mouse early transposon insertions are responsible for ~10% of spontaneous mutant phenotypes. We previously reported the phenotypes and genetic mapping of Polypodia, (Ppd), a spontaneous, X-linked dominant mutation with profound effects on body plan morphogenesis. Our new data shows that mutant mice are not born in expected Mendelian ratios secondary to loss after E9.5. In addition, we refined the Ppd genetic interval and discovered a novel ETnII-ß early transposon insertion between the genes for Dusp9 and Pnck. The ETn inserted 1.6 kb downstream and antisense to Dusp9 and does not disrupt polyadenylation or splicing of either gene. Knock-in mice engineered to carry the ETn display Ppd characteristic ectopic caudal limb phenotypes, showing that the ETn insertion is the Ppd molecular lesion. Early transposons are actively expressed in the early blastocyst. To explore the consequences of the ETn on the genomic landscape at an early stage of development, we compared interval gene expression between wild-type and mutant ES cells. Mutant ES cell expression analysis revealed marked upregulation of Dusp9 mRNA and protein expression. Evaluation of the 5' LTR CpG methylation state in adult mice revealed no correlation with the occurrence or severity of Ppd phenotypes at birth. Thus, the broad range of phenotypes observed in this mutant is secondary to a novel intergenic ETn insertion whose effects include dysregulation of nearby interval gene expression at early stages of development.


Asunto(s)
Elementos Transponibles de ADN/genética , Genes Ligados a X , Mutagénesis Insercional/genética , Empalme del ARN/genética , Animales , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Mapeo Cromosómico , Fosfatasas de Especificidad Dual/genética , Regulación de la Expresión Génica , Genes Dominantes , Ratones , Fenotipo
15.
Am J Med Genet A ; 161A(5): 1019-27, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23532960

RESUMEN

Polyalanine repeat expansion diseases are hypothesized to result from unequal chromosomal recombination, yet mechanistic studies are lacking. We identified two de novo cases of hand-foot-genital syndrome (HFGS) associated with polyalanine expansions in HOXA13 that afforded rare opportunities to investigate the mechanism. The first patient with HFGS was heterozygous for a de novo nine codon polyalanine expansion. Haplotype investigation showed that the expansion arose on the maternally inherited chromosome but not through unequal crossing over between homologs, leaving unequal sister chromatid exchange during mitosis or meiosis or slipped mispairing as possible explanations. The asymptomatic father of the second patient with HFGS was mosaic for a six codon polyalanine expansion. Multiple tissue PCR and clonal analysis of paternal fibroblasts showed only expansion/WT and WT/WT clones, and haplotype data showed that two unaffected offspring inherited the same paternal allele without the expansion, supporting a postzygotic origin. Absence of the contracted allele in the mosaic father does not support sister chromatid exchange in the origin of the expansion. Mosaicism for HOXA13 polyalanine expansions may be associated with a normal phenotype, making examination of parental DNA essential in apparently de novo HFGS cases to predict accurate recurrence risks. We could not find an example in the literature where unequal sister chromatid exchange has been proven for any polyalanine expansion, suggesting that the principal mechanism for polyalanine expansions (and contractions) is slipped mispairing without repair or that the true frequency of unequal sister chromatid exchange involving these repeats is low.


Asunto(s)
Anomalías Múltiples/genética , Expansión de las Repeticiones de ADN/genética , Deformidades Congénitas del Pie/genética , Deformidades Congénitas de la Mano/genética , Proteínas de Homeodominio/genética , Anomalías Urogenitales/genética , Adolescente , Adulto , Femenino , Humanos , Recién Nacido , Masculino , Mutación , Péptidos , Fenotipo
16.
Am J Med Genet A ; 158A(4): 839-49, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22407726

RESUMEN

Two hereditary syndromes, lymphedema-distichiasis (LD) syndrome and blepharo-chelio-dontic (BCD) syndrome include the aberrant growth of eyelashes from the meibomian glands, known as distichiasis. LD is an autosomal dominant syndrome primarily characterized by distichiasis and the onset of lymphedema usually during puberty. Mutations in the forkhead transcription factor FOXC2 are the only known cause of LD. BCD syndrome consists of autosomal dominant abnormalities of the eyelid, lip, and teeth, and the etiology remains unknown. In this report, we describe a proband that presented with distichiasis, microcephaly, bilateral grade IV vesicoureteral reflux requiring ureteral re-implantation, mild intellectual impairment and apparent glomuvenous malformations (GVM). Distichiasis was present in three generations of the proband's maternal side of the family. The GVMs were severe in the proband, and maternal family members exhibited lower extremity varicosities of variable degree. A GLMN (glomulin) gene mutation was identified in the proband that accounts for the observed GVMs; no other family member could be tested. TIE2 sequencing revealed no mutations. In the proband, an additional submicroscopic 265 kb contiguous gene deletion was identified in 16q24.3, located 609 kb distal to the FOXC2 locus, which was inherited from the proband's mother. The deletion includes the C16ORF95, FBXO31, MAP1LC3B, and ZCCHC14 loci and 115 kb of a gene desert distal to FOXC2 and FOXL1. Thus, it is likely that the microcephaly, distichiasis, vesicoureteral, and intellectual impairment in this family may be caused by the deletion of one or more of these genes and/or deletion of distant cis-regulatory elements of FOXC2 expression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Cromosomas Humanos Par 16/genética , Linfedema/genética , Niño , Mapeo Cromosómico , Variaciones en el Número de Copia de ADN , Pestañas/anomalías , Femenino , Factores de Transcripción Forkhead/genética , Eliminación de Gen , Genotipo , Tumor Glómico/genética , Humanos , Discapacidad Intelectual/genética , Imagen por Resonancia Magnética , Microcefalia/genética , Paraganglioma Extraadrenal/genética , Receptor TIE-2/genética , Reflujo Vesicoureteral/genética
17.
Am J Med Genet A ; 158A(3): 635-40, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22302627

RESUMEN

The 4q deletion syndrome is a rare chromosome deletion syndrome with a wide range of clinical phenotypes. There is limited clinical phenotype and molecular correlation for congenital heart defects (CHDs) reported so far for this region primarily because many cases are large deletions, often terminal, and because high-resolution array has not been reported in the evaluation of this group of patients. CHDs are reported in about 60% of patients with 4q deletion syndrome, occurring in the presence or absence of dHAND deletion, implying the existence of additional genes in 4q whose dosage influences cardiac development. We report an 8-month-old patient with a large mid-muscular to outlet ventricular septal defect (VSD), moderate-sized secundum-type atrial septal defect (ASD), thickened, dysplastic pulmonary valve with mild stenosis and moderate pulmonic regurgitation, and patent ductus arteriosus (PDA). Illumina CytoSNP array analysis disclosed a de novo, heterozygous, interstitial deletion of 11.6 Mb of genomic material from the long arm of chromosome 4, at 4q32.3-q34.3 (Chr4:167236114-178816031; hg18). The deleted region affects 37 RefSeq genes (hg18), including two provisional microRNA stemloops. Three genes in this region, namely TLL1 (Tolloid-like-1), HPGD (15-hydroxyprostaglandin dehydrogenase), and HAND2 (Heart and neural crest derivatives-expressed protein 2), are known to be involved in cardiac morphogenesis. This report narrows the critical region responsible for CHDs seen in 4q deletion syndrome.


Asunto(s)
Sistema Cardiovascular/anatomía & histología , Deleción Cromosómica , Cromosomas Humanos Par 4 , Cromosomas Artificiales Bacterianos , Hibridación Genómica Comparativa , Femenino , Dosificación de Gen , Humanos , Hibridación Fluorescente in Situ , Lactante , Masculino
18.
Kidney Int ; 81(2): 196-200, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21900877

RESUMEN

Congenital abnormalities of the kidney and urinary tract (CAKUT) are the most frequent cause of chronic kidney disease in children, accounting for about half of all cases. Although many forms of CAKUT are likely caused by single-gene defects, mutations in only a few genes have been identified. In order to detect new contributing genes we pooled DNA from 20 individuals to amplify all 313 exons of 30 CAKUT candidate genes by PCR analysis and massively parallel exon resequencing. Mutation carriers were identified by Sanger sequencing. We repeated the analysis with 20 new patients to give a total of 29 with unilateral renal agenesis and 11 with other CAKUT phenotypes. Five heterozygous missense mutations were detected in 2 candidate genes (4 mutations in FRAS1 and 1 in FREM2) not previously implicated in non-syndromic CAKUT in humans. All of these mutations were absent from 96 healthy control individuals and had a PolyPhen score over 1.4, predicting possible damaging effects of the mutation on protein function. Recessive truncating mutations in FRAS1 and FREM2 were known to cause Fraser syndrome in humans and mice; however, a phenotype in heterozygous carriers has not been described. Thus, heterozygous missense mutations in FRAS1 and FREM2 cause non-syndromic CAKUT in humans.


Asunto(s)
Anomalías Congénitas/genética , Exones , Proteínas de la Matriz Extracelular/genética , Enfermedades Renales/congénito , Femenino , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Riñón/anomalías , Enfermedades Renales/genética , Masculino , Mutación Missense , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
19.
J Pediatr ; 160(4): 679-683.e2, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22050868

RESUMEN

OBJECTIVE: To delineate the phenotypic and molecular spectrum of patients with a syndromic variant of severe congenital neutropenia (SCN) due to mutations in the gene encoding glucose-6-phosphatase catalytic subunit 3 (G6PC3). STUDY DESIGN: Patients with syndromic SCN were characterized for associated malformations and referred to us for G6PC3 mutational analysis. RESULTS: In a cohort of 31 patients with syndromic SCN, we identified 16 patients with G6PC3 deficiency including 11 patients with novel biallelic mutations. We show that nonhematologic features of G6PC3 deficiency are good predictive indicators for mutations in G6PC3. Additionally, we demonstrate genetic variability in this disease and define novel features such as growth hormone deficiency, genital malformations, disrupted bone remodeling, and abnormalities of the integument. G6PC3 mutations may be associated with hydronephrosis or facial dysmorphism. The risk of transition to myelodysplastic syndrome/acute myeloid leukemia may be lower than in other genetically defined SCN subgroups. CONCLUSIONS: The phenotypic and molecular spectrum in G6PC3 deficiency is wider than previously appreciated. The risk of transition to myelodysplastic syndrome or acute myeloid leukemia may be lower in G6PC3 deficiency compared with other subgroups of SCN.


Asunto(s)
Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Neutropenia/congénito , Adolescente , Niño , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Femenino , Genotipo , Humanos , Lactante , Masculino , Neutropenia/genética , Fenotipo
20.
Sci Transl Med ; 3(111): 111ra121, 2011 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-22133722

RESUMEN

Individual cancers harbor a set of genetic aberrations that can be informative for identifying rational therapies currently available or in clinical trials. We implemented a pilot study to explore the practical challenges of applying high-throughput sequencing in clinical oncology. We enrolled patients with advanced or refractory cancer who were eligible for clinical trials. For each patient, we performed whole-genome sequencing of the tumor, targeted whole-exome sequencing of tumor and normal DNA, and transcriptome sequencing (RNA-Seq) of the tumor to identify potentially informative mutations in a clinically relevant time frame of 3 to 4 weeks. With this approach, we detected several classes of cancer mutations including structural rearrangements, copy number alterations, point mutations, and gene expression alterations. A multidisciplinary Sequencing Tumor Board (STB) deliberated on the clinical interpretation of the sequencing results obtained. We tested our sequencing strategy on human prostate cancer xenografts. Next, we enrolled two patients into the clinical protocol and were able to review the results at our STB within 24 days of biopsy. The first patient had metastatic colorectal cancer in which we identified somatic point mutations in NRAS, TP53, AURKA, FAS, and MYH11, plus amplification and overexpression of cyclin-dependent kinase 8 (CDK8). The second patient had malignant melanoma, in which we identified a somatic point mutation in HRAS and a structural rearrangement affecting CDKN2C. The STB identified the CDK8 amplification and Ras mutation as providing a rationale for clinical trials with CDK inhibitors or MEK (mitogen-activated or extracellular signal-regulated protein kinase kinase) and PI3K (phosphatidylinositol 3-kinase) inhibitors, respectively. Integrative high-throughput sequencing of patients with advanced cancer generates a comprehensive, individual mutational landscape to facilitate biomarker-driven clinical trials in oncology.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/genética , Medicina de Precisión/métodos , Animales , Secuencia de Bases , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Datos de Secuencia Molecular , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA