Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Heliyon ; 10(9): e30494, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756585

RESUMEN

The glioblastoma brain tumour (GBM) stands out as the most aggressive and resistant-to-treatment malignancy. Nevertheless, the gut-brain connection plays a pivotal role in influencing the growth and activation of the central nervous system. In this particular investigation, we aimed to assess and characterize the gut microbial ecosystem in GBM patients, both quantitatively and qualitatively. We collected faecal samples from 15 healthy volunteers and 25 GBM patients. To delve into the microbial content, we employed PCR-DGGE, targeting the V3 region of the 16S rRNA gene, and conducted qPCR to measure the levels of crucial intestinal bacteria. For a more in-depth analysis, high-throughput sequencing was performed on a selection of 20 random faecal samples (10 from healthy individuals and 10 from GBM patients), targeting the V3+V4 region of the 16S rRNA gene. Our findings from examining the richness and diversity of the gut microbiota unveiled that GBM patients exhibited significantly higher microbial diversity compared to healthy individuals. At the phylum level, Proteobacteria saw a significant increase, while Firmicutes experienced a noteworthy decrease in the GBM group. Moving down to the family level, we observed significantly elevated levels of Enterobacteriaceae, Bacteroidaceae, and Lachnospiraceae in GBM patients, while levels of Veillonellaceae, Rikenellaceae, and Prevotellaceae were notably lower. Delving into genera statistics, we noted a substantial increase in the abundance of Parasutterella, Escherichia-Shigella, and Bacteroides, alongside significantly lower levels of Ruminococcus 2, Faecalibacterium, and Prevotella_9 in the GBM group compared to the control group. Furthermore, when examining specific species, we found a significant increase in Bacteroides vulgatus and Escherichia coli in the GBM group. These observations collectively indicate a marked dysbiosis in the gut microbial composition of GBM patients. Additionally, the GBM group exhibited notably higher levels of alpha diversity when compared to the control group. This increase in diversity suggests a significant bacterial overgrowth in the gut of GBM patients in contrast to the controls. As a result, this research opens up potential avenues to gain a better understanding of the underlying mechanisms, pathways, and potential treatments for GBM, stemming from the significant implications of gut microbial dysbiosis in these patients.

2.
NanoImpact ; 28: 100419, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36038134

RESUMEN

Gold nanomaterials (GNMs) have unique optical properties with less antigenicity, and their physicochemical properties have strong relation with an immunological response at bio-interface including antigenicity. An interpretation of this correlation would significantly impact on the clinical and theranostic applications of GNMs. Herein, we studied the effect of GNMs morphology on the cytotoxicity (in-vitro), innate immune responses, hepatotoxicity, and nephrotoxicity (in-vivo studies) using gold nano-cups (GNCs), porous gold nanospheres (PGNSs) and solid gold nano particles (SGNPs) coated with the same ligand to ensure similar surface chemistry. The cytotoxicity was assessed via sulfo-rhodamine B (SRB) assay, and the cytotoxicity data showed that morphological features at nanoscale dimensions like surface roughness and hollowness etc. have a significant impact on cellular viability. The biochemical and histopathological study of liver and kidney tissues also showed that all GNMs did not show any toxicity even at high concentration (100 µL). The relative quantification of cytokine gene expression of TNF-α, IFN-γ, IL-4, 1L-6, and 1L-17 (against each morphology) was checked after in-vivo activation in mice. Among the different nanogold morphologies, PVP stabilized GNCs (PVP-GNCs) showed the highest release of pro-inflammatory cytokines, which might be due to their high surface energy and large surface area for exposure as compared to other nanogold morphologies studied. The pro-inflammatory cytokine release could be suppressed by coating with some anti-inflammatory polymer, i.e., inulin. The in-vitro results of pro-inflammatory (TNF-α, IL-1) cytokines also suggested that all GNMs may induce activation of macrophages and Th1 immune response. The in-vivo activation results showed a decrease in mRNA expression of the cytokines (TNF-α, IFN-γ, IL-4, 1L-6 and 1L-17). Based on these findings, we proposed that the shape and morphology of GNMs control their immune response at nano-bio interface, and it must be considered while designing their role for different biomedical applications like immuno-stimulation and bio-imaging.


Asunto(s)
Oro , Inmunidad Innata , Nanopartículas del Metal , Animales , Ratones , Oro/inmunología , Interleucina-4 , Proyectos de Investigación , Factor de Necrosis Tumoral alfa
3.
J Cancer ; 13(6): 2014-2028, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399732

RESUMEN

Thyroid cancer in humans has a fast-growing prevalence, with the most common lethal endocrine malignancy for unknown reasons. The current study was aimed to perform qualitative and quantitative investigation and characterization of the gut bacterial composition of euthyroid thyroid cancer patients. The fecal samples were collected from sixteen euthyroid thyroid cancer patients and ten from healthy subjects. The PCR-DGGE was conducted by targetting the V3 region of 16S rRNA gene, as well as real-time PCR for Bacteroides vulgatus, E.coli Bifidobacterium, Clostridium leptum and Lactobacillus were carried. High-throughput sequencing of V3+V4 region of 16S rRNA gene was performed on Hiseq 2500 platform on 20 (10 healthy & 10 diseased subjects) randomly selected fecal samples. The richness indices and comparative diversity analysis showed significant gut microbial modification in euthyroid thyroid cancer than control. At phylum level, there was significant enrichment of Firmicutes, Verrucomicrobia, while a significant decrease in Bacteroidetes was detected in the experimental group. At family statistics, significant high levels of Ruminococcaceae and Verrucomicrobiaceae, while the significant lower abundance of Bacteroidaceae, Prevotellaceae, Porphyromonadaceae, and Alcaligenaceae was after observed. It also found that the significantly raised level of Escherichia-Shigella, Akkermansia [Eubacterium]_coprostanoligenes, Dorea, Subdoligranulum, and Ruminococcus_2 genera, while significantly lowered genera of the patient group were Prevotella_9, Bacteroides and Klebsiella. The species-level gut microbial composition showed a significantly raised level of Escherichia coli in euthyroid thyroid cancer. Thus, this study reveals that euthyroid thyroid cancer patients have significant gut microbial dysbiosis. Moreover, Statistics (P<0.05) of each gut microbial taxa were significantly changed in euthyroid thyroid cancer patients. Therefore, the current study may propose new approaches to understanding thyroid cancer patients' disease pathways, mechanisms, and treatment.

4.
J Appl Biomed ; 19(1): 1-13, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-34907711

RESUMEN

Due to its aggressive nature and low survival rate, esophageal cancer is one of the deadliest cancer. While the intestinal microbiome significantly influences human health and disease. This research aimed to investigate and characterize the relative abundance of intestinal bacterial composition in esophageal cancer patients. The fecal samples were collected from esophageal cancer patients (n = 15) and healthy volunteers (n = 10). The PCR-DGGE was carried out by focusing on the V3 region of the 16S rRNA gene, and qPCR was performed for Bacteroides vulgatus, Escherichia coli, Bifidobacterium, Clostridium leptum and Lactobacillus. High-throughput sequencing of the 16S rRNA gene targeting the V3+V4 region was performed on 20 randomly selected samples. PCR-DGGE and High-throughput diversity results showed a significant alteration of gut bacterial composition between the experimental and control groups, which indicates the gut microbial dysbiosis in esophageal cancer patients. At the phylum level, there was significant enrichment of Bacteroidetes, while a non-significant decrease of Firmicutes in the experimental group. At family statistics, a significantly higher level of Bacteroidaceae and Enterobacteriaceae, while a significantly lower abundance of Prevotellaceae and Veillonellaceae were observed. There was a significantly high prevalence of genera Bacteroides, Escherichia-Shigella, while a significantly lower abundance of Prevotella_9 and Dialister in the experimental group as compared to the control group. Furthermore, the species analysis also showed significantly raised level of Bacteroides vulgatus and Escherichia coli in the experimental group. These findings revealed a significant gut microbial dysbiosis in esophageal cancer patients. So, the current study can be used for the understanding of esophageal cancer treatment, disease pathway, mechanism, and probiotic development.


Asunto(s)
Neoplasias Esofágicas , Microbioma Gastrointestinal , Bacteroides , Bacteroidetes/genética , Estudios de Casos y Controles , Disbiosis/microbiología , Escherichia coli/genética , Microbioma Gastrointestinal/genética , Humanos , ARN Ribosómico 16S/genética
5.
Biomed Pharmacother ; 107: 806-817, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30142542

RESUMEN

Several plants found rich in flavonoid, polyphenols, and antioxidants reported antiaging, oppose inflammation and carcinogenic properties but have rarely been applied in dermatology. The present study was an active attempt to formulate a stable phytocosmetic emulsion system loaded with 2% pre-concentrated Prosopis cineraria bark extract, aiming to revive facial skin properties. In order to obtain potent therapeutic activities, we first prepared extracts of stem, leaves, and bark and screen them on basis of phenolic, flavonoids contents and antioxidant, antibacterial, lipoxygenase and tyrosinase inhibition activities. Furthermore, cytocompatibility of the extract was also determined prior starting in vivo investigations. Then the in vivo performance of 2% bark extract loaded emulsion formulation was determined by using non-invasive probe cutometer and elastometer with comparison to base formulation. The preliminary experiment showed that bark extract has a significant amount of phenolic and flavonoid compounds with eminent antioxidant potential. Furthermore, indicated an efficient antibacterial, lipoxygenase, and tyrosinase enzyme inhibition activities. Importantly, the bark extract did not induce any toxicity or apoptosis, when incubated with HaCat cells. Moreover, the in vivo results showed the formulation (size 3 µm) decreased the skin melanin, erythema and sebum contents up to 2.1-,2.7-and 79%, while increased the skin hydration and elasticity up to 2-folds and 22% as compared to the base, respectively. Owing to enhanced therapeutic effects the phytocosmetic formulation proved to be a potential skin whitening, moisturizer, anti-acne, anti-wrinkle, anti-aging therapy and could actively induce skin rejuvenation and resurfacing.


Asunto(s)
Cosméticos/farmacología , Composición de Medicamentos , Fitoquímicos/farmacología , Adulto , Antibacterianos/farmacología , Antioxidantes/análisis , Apoptosis/efectos de los fármacos , Línea Celular , Forma de la Célula/efectos de los fármacos , Elasticidad , Eritema/patología , Flavonoides/análisis , Humanos , Inhibidores de la Lipooxigenasa/farmacología , Masculino , Melaninas , Monofenol Monooxigenasa/antagonistas & inhibidores , Fenoles/análisis , Corteza de la Planta/química , Hojas de la Planta/química , Reología , Sebo/metabolismo , Piel/patología , Factor de Protección Solar
6.
J Ayub Med Coll Abbottabad ; 29(1): 3-7, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28712163

RESUMEN

BACKGROUND: Tobacco Smoking, most commonly, can cause the diseases affecting the lungs and heart. Human gut microbiota plays a key role to decide the health status of the host. Current study aimed to characterize the gut microbiota of healthy Chinese tobacco smokers and to study the alteration in diversity and similarity of gut microbiota, with comparison of healthy non-smokers. METHODS: Fecal samples were collected from fourteen healthy tobacco smokers and six from healthy non-smoker individuals. PCR-denaturing gradient gel electrophoresis, with universal primers focusing V3 region of the 16S rRNA gene, was done to characterize the overall gut microbial composition of healthy tobacco smokers in comparison with healthy non-smoker subjects and some strongly dominant gel bands were excised for sequencing. Real time PCR was also performed to evaluate the copy numbers of some dominant bacteria of intestinal flora. RESULTS: The results indicated that gut microbial diversity in tobacco smoker group was lower than non-smoker controls. Furthermore, similarity index comparison also indicated that it was lower in inter-group than intra-group, which showed that gut microbial composition was changed in tobacco smoker group. Sequencing results also indicated a change in bacterial composition between both groups. We also observed that in tobacco smoker group, there was a significant reduction in Bifidobacterium and non-significant increase in Bacteroides vulgatus, while nonsignificant decrease in Lactobacillus and clostridium leptum sub group, respectively. CONCLUSIONS: It can be concluded that in healthy Chinese tobacco smoker group, there is a notable alteration in the molecular characterization of gut microbiota.


Asunto(s)
Bacterias/genética , Heces/microbiología , Microbioma Gastrointestinal/genética , Fumadores/estadística & datos numéricos , Bacterias/clasificación , Estudios de Casos y Controles , China , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA