Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Med Chem ; 63(6): 3188-3204, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32134652

RESUMEN

Autotaxin (ATX, also known as ENPP2) is a predominant lysophosphatidic acid (LPA)-producing enzyme in the body, and LPA regulates various physiological functions, such as angiogenesis and wound healing, as well as pathological functions, including proliferation, metastasis, and fibrosis, via specific LPA receptors. Therefore, the ATX-LPA axis is a promising therapeutic target for dozens of diseases, including cancers, pulmonary and liver fibroses, and neuropathic pain. Previous structural studies revealed that the catalytic domain of ATX has a hydrophobic pocket and a hydrophobic channel; these serve to recognize the substrate, lysophosphatidylcholine (LPC), and deliver generated LPA to LPA receptors on the plasma membrane. Most reported ATX inhibitors bind to either the hydrophobic pocket or the hydrophobic channel. Herein, we present a unique ATX inhibitor that binds mainly to the hydrophobic pocket and also partly to the hydrophobic channel, inhibiting ATX activity with high potency and selectivity in vitro and in vivo. Notably, our inhibitor can rescue the cardia bifida (two hearts) phenotype in ATX-overexpressing zebrafish embryos.


Asunto(s)
Imidazoles/uso terapéutico , Inhibidores de Fosfodiesterasa/uso terapéutico , Hidrolasas Diéster Fosfóricas/metabolismo , Pirimidinas/uso terapéutico , Animales , Dominio Catalítico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Cristalografía por Rayos X , Cardiopatías/prevención & control , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Imidazoles/síntesis química , Imidazoles/metabolismo , Masculino , Ratones Endogámicos C57BL , Estructura Molecular , Inhibidores de Fosfodiesterasa/síntesis química , Inhibidores de Fosfodiesterasa/metabolismo , Unión Proteica , Pirimidinas/síntesis química , Pirimidinas/metabolismo , Relación Estructura-Actividad , Pez Cebra
2.
Nat Struct Mol Biol ; 26(6): 510-517, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31160781

RESUMEN

The L-type amino acid transporter 1 (LAT1 or SLC7A5) transports large neutral amino acids across the membrane and is crucial for brain drug delivery and tumor growth. LAT1 forms a disulfide-linked heterodimer with CD98 heavy chain (CD98hc, 4F2hc or SLC3A2), but the mechanism of assembly and amino acid transport are poorly understood. Here we report the cryo-EM structure of the human LAT1-CD98hc heterodimer at 3.3-Å resolution. LAT1 features a canonical Leu T-fold and exhibits an unusual loop structure on transmembrane helix 6, creating an extended cavity that might accommodate bulky amino acids and drugs. CD98hc engages with LAT1 through the extracellular, transmembrane and putative cholesterol-mediated interactions. We also show that two anti-CD98 antibodies recognize distinct, multiple epitopes on CD98hc but not its glycans, explaining their robust reactivities. These results reveal the principles of glycoprotein-solute carrier assembly and provide templates for improving preclinical drugs and antibodies targeting LAT1 or CD98hc.


Asunto(s)
Cadena Pesada de la Proteína-1 Reguladora de Fusión/química , Transportador de Aminoácidos Neutros Grandes 1/química , Microscopía por Crioelectrón , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/ultraestructura , Humanos , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/ultraestructura , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína
3.
Nat Plants ; 5(3): 308-315, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30742036

RESUMEN

The iron ion is an essential cofactor in several vital enzymatic reactions, such as DNA replication, oxygen transport, and respiratory and photosynthetic electron transfer chains, but its excess accumulation induces oxidative stress in cells. Vacuolar iron transporter 1 (VIT1) is important for iron homeostasis in plants, by transporting cytoplasmic ferrous ions into vacuoles. Modification of the VIT1 gene leads to increased iron content in crops, which could be used for the treatment of human iron deficiency diseases. Furthermore, a VIT1 from the malaria-causing parasite Plasmodium is considered as a potential drug target for malaria. Here we report the crystal structure of VIT1 from rose gum Eucalyptus grandis, which probably functions as a H+-dependent antiporter for Fe2+ and other transition metal ions. VIT1 adopts a novel protein fold forming a dimer of five membrane-spanning domains, with an ion-translocating pathway constituted by the conserved methionine and carboxylate residues at the dimer interface. The second transmembrane helix protrudes from the lipid membrane by about 40 Å and connects to a three-helical bundle, triangular cytoplasmic domain, which binds to the substrate metal ions and stabilizes their soluble form, thus playing an essential role in their transport. These mechanistic insights will provide useful information for the further design of genetically modified crops and the development of anti-malaria drugs.


Asunto(s)
Proteínas de Transporte de Catión/química , Aceite de Eucalipto/química , Proteínas de Transporte de Catión/metabolismo , Cristalografía por Rayos X , Citoplasma/metabolismo , Hierro/metabolismo , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Vacuolas/metabolismo
4.
Science ; 363(6423)2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30467178

RESUMEN

N 6-methyladenosine (m6A), a major modification of messenger RNAs (mRNAs), plays critical roles in RNA metabolism and function. In addition to the internal m6A, N 6, 2'-O-dimethyladenosine (m6Am) is present at the transcription start nucleotide of capped mRNAs in vertebrates. However, its biogenesis and functional role remain elusive. Using a reverse genetics approach, we identified PCIF1, a factor that interacts with the serine-5-phosphorylated carboxyl-terminal domain of RNA polymerase II, as a cap-specific adenosine methyltransferase (CAPAM) responsible for N 6-methylation of m6Am. The crystal structure of CAPAM in complex with substrates revealed the molecular basis of cap-specific m6A formation. A transcriptome-wide analysis revealed that N 6-methylation of m6Am promotes the translation of capped mRNAs. Thus, a cap-specific m6A writer promotes translation of mRNAs starting from m6Am.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Metiltransferasas/química , Proteínas Nucleares/química , Caperuzas de ARN/química , ARN Polimerasa II/química , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Espectrometría de Masas , Metilación , Biosíntesis de Proteínas , Dominios Proteicos , Sitio de Iniciación de la Transcripción
5.
Nat Commun ; 9(1): 4424, 2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30356045

RESUMEN

ENPP1 (Ecto-nucleotide pyrophosphatase phosphodiesterase 1), a type II transmembrane glycoprotein, hydrolyzes ATP to produce AMP and diphosphate, thereby inhibiting bone mineralization. A recent study showed that ENPP1 also preferentially hydrolyzes 2'3'-cGAMP (cyclic GMP-AMP) but not its linkage isomer 3'3'-cGAMP, and negatively regulates the cGAS-STING pathway in the innate immune system. Here, we present the high-resolution crystal structures of ENPP1 in complex with 3'3'-cGAMP and the reaction intermediate pA(3',5')pG. The structures revealed that the adenine and guanine bases of the dinucleotides are recognized by nucleotide- and guanine-pockets, respectively. Furthermore, the structures indicate that 2'3'-cGAMP, but not 3'3'-cGAMP, binds to the active site in a conformation suitable for catalysis, thereby explaining the specific degradation of 2'3'-cGAMP by ENPP1. Our findings provide insights into how ENPP1 hydrolyzes both ATP and cGAMP to participate in the two distinct biological processes.


Asunto(s)
Nucleótidos Cíclicos/química , Nucleótidos Cíclicos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Catálisis , Línea Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Hidrolasas Diéster Fosfóricas/química , Estructura Secundaria de Proteína , Pirofosfatasas/química , Transducción de Señal/fisiología
6.
Nat Commun ; 8(1): 876, 2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29026074

RESUMEN

P2X receptors are non-selective cation channels gated by extracellular ATP, and the P2X7 receptor subtype plays a crucial role in the immune and nervous systems. Altered expression and dysfunctions of P2X7 receptors caused by genetic deletions, mutations, and polymorphic variations have been linked to various diseases, such as rheumatoid arthritis and hypertension. Despite the availability of crystal structures of P2X receptors, the mechanism of competitive antagonist action for P2X receptors remains controversial. Here, we determine the crystal structure of the chicken P2X7 receptor in complex with the competitive P2X antagonist, TNP-ATP. The structure reveals an expanded, incompletely activated conformation of the channel, and identified the unique recognition manner of TNP-ATP, which is distinct from that observed in the previously determined human P2X3 receptor structure. A structure-based computational analysis furnishes mechanistic insights into the TNP-ATP-dependent inhibition. Our work provides structural insights into the functional mechanism of the P2X competitive antagonist.P2X receptors are nonselective cation channels that are gated by extracellular ATP. Here the authors present the crystal structure of chicken P2X7 with its bound competitive antagonist TNP-ATP and give mechanistic insights into TNP-ATP dependent inhibition through further computational analysis and electrophysiology measurements.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Receptores Purinérgicos P2X7/química , Adenosina Trifosfato/química , Animales , Sitios de Unión , Pollos , Biología Computacional , Cristalografía por Rayos X , Modelos Moleculares , Estructura Terciaria de Proteína , Antagonistas del Receptor Purinérgico P2X , Relación Estructura-Actividad
7.
Nature ; 548(7667): 356-360, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28792932

RESUMEN

Lysophosphatidic acid (LPA) is a bioactive lipid composed of a phosphate group, a glycerol backbone, and a single acyl chain that varies in length and saturation. LPA activates six class A G-protein-coupled receptors to provoke various cellular reactions. Because LPA signalling has been implicated in cancer and fibrosis, the LPA receptors are regarded as promising drug targets. The six LPA receptors are subdivided into the endothelial differentiation gene (EDG) family (LPA1-LPA3) and the phylogenetically distant non-EDG family (LPA4-LPA6). The structure of LPA1 has enhanced our understanding of the EDG family of LPA receptors. By contrast, the functional and pharmacological characteristics of the non-EDG family of LPA receptors have remained unknown, owing to the lack of structural information. Although the non-EDG LPA receptors share sequence similarity with the P2Y family of nucleotide receptors, the LPA recognition mechanism cannot be deduced from the P2Y1 and P2Y12 structures because of the large differences in the chemical structures of their ligands. Here we determine the 3.2 Å crystal structure of LPA6, the gene deletion of which is responsible for congenital hair loss, to clarify the ligand recognition mechanism of the non-EDG family of LPA receptors. Notably, the ligand-binding pocket of LPA6 is laterally open towards the membrane, and the acyl chain of the lipid used for the crystallization is bound within this pocket, indicating the binding mode of the LPA acyl chain. Docking and mutagenesis analyses also indicated that the conserved positively charged residues within the central cavity recognize the phosphate head group of LPA by inducing an inward shift of transmembrane helices 6 and 7, suggesting that the receptor activation is triggered by this conformational rearrangement.


Asunto(s)
Lisofosfolípidos/química , Lisofosfolípidos/metabolismo , Receptores del Ácido Lisofosfatídico/química , Receptores del Ácido Lisofosfatídico/metabolismo , Alopecia/congénito , Alopecia/genética , Animales , Sitios de Unión , Membrana Celular/metabolismo , Cristalografía por Rayos X , Células HEK293 , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Mutagénesis , Filogenia , Estabilidad Proteica , Estructura Secundaria de Proteína , Receptores del Ácido Lisofosfatídico/genética , Especificidad por Sustrato , Pez Cebra/genética
8.
Nat Commun ; 8(1): 148, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28747715

RESUMEN

Magnesium is an essential ion for numerous physiological processes. MgtE is a Mg2+ selective channel involved in the maintenance of intracellular Mg2+ homeostasis, whose gating is regulated by intracellular Mg2+ levels. Here, we report that ATP binds to MgtE, regulating its Mg2+-dependent gating. Crystal structures of MgtE-ATP complex show that ATP binds to the intracellular CBS domain of MgtE. Functional studies support that ATP binding to MgtE enhances the intracellular domain affinity for Mg2+ within physiological concentrations of this divalent cation, enabling MgtE to function as an in vivo Mg2+ sensor. ATP dissociation from MgtE upregulates Mg2+ influx at both high and low intracellular Mg2+ concentrations. Using site-directed mutagenesis and structure based-electrophysiological and biochemical analyses, we identify key residues and main structural changes involved in the process. This work provides the molecular basis of ATP-dependent modulation of MgtE in Mg2+ homeostasis.MgtE is an Mg2+ transporter involved in Mg2+ homeostasis. Here, the authors report that ATP regulates the Mg+2-dependent gating of MgtE and use X-ray crystallography combined with functional studies to propose the molecular mechanisms involved in this process.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antiportadores/metabolismo , Proteínas Bacterianas/metabolismo , Homeostasis , Magnesio/metabolismo , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Antiportadores/química , Antiportadores/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Homología de Secuencia de Aminoácido , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
9.
Annu Rev Biochem ; 86: 541-566, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28399655

RESUMEN

The innate immune system functions as the first line of defense against invading bacteria and viruses. In this context, the cGAS/STING [cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase/STING] signaling axis perceives the nonself DNA associated with bacterial and viral infections, as well as the leakage of self DNA by cellular dysfunction and stresses, to elicit the host's immune responses. In this pathway, the noncanonical cyclic dinucleotide 2',3'-cyclic GMP-AMP (2',3'-cGAMP) functions as a second messenger for signal transduction: 2',3'-cGAMP is produced by the enzyme cGAS upon its recognition of double-stranded DNA, and then the 2',3'-cGAMP is recognized by the receptor STING to induce the phosphorylation of downstream factors, including TBK1 (TANK binding kinase 1) and IRF3 (interferon regulatory factor 3). Numerous crystal structures of the components of this cGAS/STING signaling axis have been reported and these clarify the structural basis for their signal transduction mechanisms. In this review, we summarize recent progress made in the structural dissection of this signaling pathway and indicate possible directions of forthcoming research.


Asunto(s)
ADN/inmunología , Inmunidad Innata , Nucleótidos Cíclicos/inmunología , Nucleotidiltransferasas/inmunología , Sistemas de Mensajero Secundario/inmunología , Animales , Bacterias , Cristalografía por Rayos X , Citosol/química , Citosol/inmunología , ADN/química , ADN/genética , Regulación de la Expresión Génica , Humanos , Factor 3 Regulador del Interferón/química , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Modelos Moleculares , Nucleótidos Cíclicos/química , Nucleótidos Cíclicos/genética , Nucleotidiltransferasas/química , Nucleotidiltransferasas/genética , Fosforilación , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Sistemas de Mensajero Secundario/genética
10.
Sci Rep ; 6: 34756, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27721487

RESUMEN

In the innate immune system, pattern recognition receptors (PRRs) specifically recognize ligands derived from bacteria or viruses, to trigger the responsible downstream pathways. DEAD box protein 41 (DDX41) is an intracellular PRR that triggers the downstream pathway involving the adapter STING, the kinase TBK1, and the transcription factor IRF3, to activate the type I interferon response. DDX41 is unique in that it recognizes two different ligands; i.e., double-stranded DNA (dsDNA) and cyclic dinucleotides (CDN), via its DEAD domain. However, the structural basis for the ligand recognition by the DDX41 DEAD domain has remained elusive. Here, we report two crystal structures of the DDX41 DEAD domain in apo forms, at 1.5 and 2.2 Å resolutions. A comparison of the two crystal structures revealed the flexibility in the ATP binding site, suggesting its formation upon ATP binding. Structure-guided functional analyses in vitro and in vivo demonstrated the overlapped binding surface for dsDNA and CDN, which is distinct from the ATP-binding site. We propose that the structural rearrangement of the ATP binding site is crucial for the release of ADP, enabling the fast turnover of DDX41 for the dsDNA/CDN-induced STING activation pathway.


Asunto(s)
Adenosina Trifosfato/metabolismo , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , ADN/metabolismo , Nucleótidos Cíclicos/metabolismo , Sitios de Unión , Cristalografía por Rayos X , ARN Helicasas DEAD-box/genética , Humanos , Inmunidad Innata , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Transducción de Señal
11.
J Immunol ; 197(8): 3111-3119, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27630163

RESUMEN

The breakpoint cluster region (BCR) is known as a kinase and cause of leukemia upon fusing to Abl kinase. In this study, we demonstrate that BCR associated with the α subunit of casein kinase II (CK2α), rather than BCR itself, is required for inflammation development. We found that BCR knockdown inhibited NF-κB activation in vitro and in vivo. Computer simulation, however, suggested that the putative BCR kinase domain has an unstable structure with minimal enzymatic activity. Liquid chromatography-tandem mass spectrometry analysis showed that CK2α associated with BCR. We found the BCR functions are mediated by CK2α. Indeed, CK2α associated with adaptor molecules of TNF-αR and phosphorylated BCR at Y177 to establish a p65 binding site after TNF-α stimulation. Notably, p65 S529 phosphorylation by CK2α creates a p300 binding site and increased p65-mediated transcription followed by inflammation development in vivo. These results suggest that BCR-mediated inflammation is dependent on CK2α, and the BCR-CK2α complex could be a novel therapeutic target for various inflammatory diseases.


Asunto(s)
Artritis/genética , Quinasa de la Caseína II/metabolismo , Proteínas de Fusión bcr-abl/metabolismo , Cromosoma Filadelfia , Proteínas Proto-Oncogénicas c-bcr/metabolismo , Animales , Artritis Experimental/genética , Línea Celular , Cromatografía Liquida , Proteínas de Fusión bcr-abl/genética , Genes abl/genética , Humanos , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-bcr/genética , ARN Interferente Pequeño/genética , Espectrometría de Masas en Tándem , Factor de Necrosis Tumoral alfa/metabolismo
12.
Nat Commun ; 7: 12547, 2016 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-27552911

RESUMEN

Optineurin (OPTN) mutations cause neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and glaucoma. Although the ALS-associated E478G mutation in the UBAN domain of OPTN reportedly abolishes its NF-κB suppressive activity, the precise molecular basis in ALS pathogenesis still remains unclear. Here we report that the OPTN-UBAN domain is crucial for NF-κB suppression. Our crystal structure analysis reveals that OPTN-UBAN binds linear ubiquitin with homology to NEMO. TNF-α-mediated NF-κB activation is enhanced in OPTN-knockout cells, through increased ubiquitination and association of TNF receptor (TNFR) complex I components. Furthermore, OPTN binds caspase 8, and OPTN deficiency accelerates TNF-α-induced apoptosis by enhancing complex II formation. Immunohistochemical analyses of motor neurons from OPTN-associated ALS patients reveal that linear ubiquitin and activated NF-κB are partially co-localized with cytoplasmic inclusions, and that activation of caspases is elevated. Taken together, OPTN regulates both NF-κB activation and apoptosis via linear ubiquitin binding, and the loss of this ability may lead to ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Mutación , Factor de Transcripción TFIIIA/genética , Factor de Transcripción TFIIIA/metabolismo , Sustitución de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Apoptosis , Caspasas/metabolismo , Proteínas de Ciclo Celular , Cristalografía por Rayos X , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Quinasa I-kappa B/metabolismo , Cuerpos de Inclusión/metabolismo , Proteínas de Transporte de Membrana , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , FN-kappa B/metabolismo , Unión Proteica , Dominios Proteicos , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Factor de Transcripción TFIIIA/química , Ubiquitinación
13.
Nat Commun ; 7: 12198, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27416963

RESUMEN

Sperm-egg fusion is the critical step in mammalian fertilization, and requires the interaction between IZUMO1 on the sperm surface and JUNO (also known as folate receptor (FR) 4 or IZUMO1R) on the egg surface. Whereas other FRs bind and uptake folates, JUNO binds IZUMO1 and establishes the cell-cell adhesion. However, the mechanism of IZUMO1 recognition by JUNO has remained elusive. Here we report the crystal structure of mouse JUNO, at 2.3 Å resolution. A structural comparison of JUNO with the FRs revealed that JUNO and the FRs have similar overall structures, but JUNO lacks the folate-binding pocket, thereby explaining the inability of JUNO to bind folate. Further complementation of Juno knockout eggs with mutant Juno messenger RNAs revealed that the conserved, surface-exposed tryptophan residue of JUNO is required for sperm binding and fertilization. Our structure-based in vivo functional analyses provide a framework towards a mechanistic understanding of mammalian gamete recognition.


Asunto(s)
Fertilización/fisiología , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Animales , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Adhesión Celular , Cristalografía por Rayos X , Proteínas del Huevo , Femenino , Receptor 1 de Folato/química , Receptor 1 de Folato/metabolismo , Células HEK293 , Humanos , Inmunoglobulinas/química , Inmunoglobulinas/genética , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones Noqueados , Mutación , Receptores de Superficie Celular/genética , Interacciones Espermatozoide-Óvulo/fisiología , Triptófano/genética , Triptófano/metabolismo
14.
Biophys J ; 110(6): 1346-54, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-27028644

RESUMEN

Bacterial pathogens or cancer cells can acquire multidrug resistance, which causes serious clinical problems. In cells with multidrug resistance, various drugs or antibiotics are extruded across the cell membrane by multidrug transporters. The multidrug and toxic compound extrusion (MATE) transporter is one of the five families of multidrug transporters. MATE from Pyrococcus furiosus uses H(+) to transport a substrate from the cytoplasm to the outside of a cell. Crystal structures of MATE from P. furiosus provide essential information on the relevant H(+)-binding sites (D41 and D184). Hybrid quantum mechanical/molecular mechanical simulations and continuum electrostatic calculations on the crystal structures predict that D41 is protonated in one structure (Straight) and, both D41 and D184 protonated in another (Bent). All-atom molecular dynamics simulations suggest a dynamic equilibrium between the protonation states of the two aspartic acids and that the protonation state affects hydration in the substrate binding cavity and lipid intrusion in the cleft between the N- and C-lobes. This hypothesis is examined in more detail by quantum mechanical/molecular mechanical calculations on snapshots taken from the molecular dynamics trajectories. We find the possibility of two proton transfer (PT) reactions in Straight: the 1st PT takes place between side-chains D41 and D184 through a transient formation of low-barrier hydrogen bonds and the 2nd through another H(+) from the headgroup of a lipid that intrudes into the cleft resulting in a doubly protonated (both D41 and D184) state. The 1st PT affects the local hydrogen bond network and hydration in the N-lobe cavity, which would impinge on the substrate-binding affinity. The 2nd PT would drive the conformational change from Straight to Bent. This model may be applicable to several prokaryotic H(+)-coupled MATE multidrug transporters with the relevant aspartic acids.


Asunto(s)
Proteínas Arqueales/metabolismo , Protones , Pyrococcus furiosus/metabolismo , Proteínas Arqueales/química , Sitios de Unión , Cristalografía por Rayos X , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos/química , Modelos Biológicos , Simulación de Dinámica Molecular
15.
Cell Rep ; 14(4): 932-944, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26804916

RESUMEN

P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn(2+) ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn(2+) potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg(2+). Overall, our work provides structural insights into the divalent cation modulations of P2X receptors.


Asunto(s)
Proteínas de Artrópodos/química , Receptores Purinérgicos P2X/química , Adenosina Trifosfato/farmacología , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/metabolismo , Magnesio/farmacología , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Unión Proteica , Receptores Purinérgicos P2X/metabolismo , Garrapatas , Xenopus , Zinc/farmacología
16.
Structure ; 23(5): 843-850, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25865248

RESUMEN

Cyclic dinucleotides (CDNs) play key roles as second messengers and signaling molecules in bacteria and metazoans. The newly identified dinucleotide cyclase in Vibrio cholerae (DncV) produces three different CDNs containing two 3'-5' phosphodiester bonds, and its predominant product is cyclic GMP-AMP, whereas mammalian cyclic GMP-AMP synthase (cGAS) produces only cyclic GMP-AMP containing mixed 2'-5' phosphodiester bonds. We report the crystal structures of V. cholerae and Escherichia coli DncV in complex with various nucleotides in the pre-reaction states. The high-resolution structures revealed that DncV preferably recognizes ATP and GTP as acceptor and donor nucleotides, respectively, in the first nucleotidyl transfer reaction. Considering the recently reported intermediate structures, our pre-reaction state structures provide the precise mechanism of 3'-5' linked cyclic AMP-GMP production in bacteria. A comparison with cGAS in the pre-reaction states suggests that the orientation of the acceptor nucleotide primarily determines the distinct linkage specificities between DncV and cGAS.


Asunto(s)
Proteínas Bacterianas/química , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Escherichia coli/enzimología , Vibrio cholerae/enzimología , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/química , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Vibrio cholerae/química
17.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 9): 1236-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25195899

RESUMEN

Elongation factor P (EF-P) plays an essential role in the translation of polyproline-containing proteins in bacteria. It becomes functional by the post-translational modification of its highly conserved lysine residue. It is first ß-lysylated by PoxA and then hydroxylated by YfcM. In this work, the YfcM protein from Escherichia coli was overexpressed, purified and crystallized. The crystal of YfcM was obtained by the in situ proteolysis crystallization method and diffracted X-rays to 1.45 Šresolution. It belonged to space group C2, with unit-cell parameters a = 124.4, b = 37.0, c = 37.6 Å, ß = 101.2°. The calculated Matthews coefficient (VM) of the crystal was 1.91 Å(3) Da(-1), indicating that one YfcM molecule is present in the asymmetric unit with a solvent content of 35.7%.


Asunto(s)
Cristalografía por Rayos X/métodos , Proteínas de Escherichia coli/química , Oxigenasas de Función Mixta/química , Factores de Elongación de Péptidos/química , Secuencia de Aminoácidos , Secuencia de Bases , Cristalización , Cartilla de ADN , Hidroxilación , Datos de Secuencia Molecular , Conformación Proteica , Proteolisis
18.
Structure ; 22(2): 345-52, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24389023

RESUMEN

SIRT2 deacetylates specific acetyllysine residues in diverse proteins and is implicated in a variety of cellular processes. SIRT2 inhibition thus has potentials to treat human diseases such as cancers and neurodegenerative disorders. We have recently developed a series of ε-trifluoroacetyllysine-containing macrocyclic peptides, which inhibit the SIRT2 activity more potently than most other known inhibitors. Here, we report the crystal structure of human SIRT2 in complex with a macrocyclic peptide inhibitor, S2iL5, at 2.5 Å resolution. The structure revealed that S2iL5 binds to the active site of SIRT2 through extensive interactions. A structural comparison of the SIRT2-S2iL5 complex with SIRT2 in the free form, and in complex with ADP-ribose, revealed that S2iL5 induces an open-to-closed domain movement and an unexpected helix-to-coil transition in a SIRT2-specific region. Our findings unveil the potential of macrocyclic peptides to bind target proteins by inducing dynamic structural changes.


Asunto(s)
Compuestos Macrocíclicos/química , Péptidos Cíclicos/química , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/química , Adenosina Difosfato Ribosa/química , Dominio Catalítico , Cristalografía por Rayos X , Análisis Mutacional de ADN , Humanos , Cinética , Modelos Moleculares , Péptidos/química , Unión Proteica , Resonancia por Plasmón de Superficie
19.
J Struct Funct Genomics ; 15(3): 107-15, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24368747

RESUMEN

The Sec translocon facilitates transportation of newly synthesized polypeptides from the cytoplasm to the lumen/periplasm across the phospholipid membrane. Although the polypeptide-conducting machinery is formed by the SecYEG-SecA complex in bacteria, its transportation efficiency is markedly enhanced by SecDF. A previous study suggested that SecDF assumes at least two conformations differing by a 120° rotation in the spatial orientation of the P1 head subdomain to the rigid base, and that the conformational dynamics plays a critical role in polypeptide translocation. Here we addressed this hypothesis by analyzing the 3D structure of SecDF using electron tomography and single particle reconstruction. Reconstruction of wt SecDF showed two major conformations; one resembles the crystal structure of full-length SecDF (F-form structure), while the other is similar to the hypothetical structural variant based on the crystal structure of the isolated P1 domain (I-form structure). The transmembrane domain of the I-form structure has a scissor like cleft open to the periplasmic side. We also report the structure of a double cysteine mutant designed to constrain SecDF to the I-form. This reconstruction has a protrusion at the periplasmic end that nicely fits the orientation of P1 in the I-from. These results provide firm evidence for the occurrence of the I-form in solution and support the proposed F- to I-transition of wt SecDF during polypeptide translocation.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Proteínas de la Membrana/ultraestructura , Proteínas de Transporte de Membrana/ultraestructura , Thermus thermophilus/genética , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Tomografía con Microscopio Electrónico , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Mutación , Estructura Terciaria de Proteína , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA