Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Hepatology ; 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38975812

RESUMEN

BACKGROUND AND AIMS: Antimicrobial proteins of the regenerating family member 3 alpha (REG3A) family provide a first line of protection against infections and transformed cells. Their expression is inducible by inflammation, which makes their role in cancer biology less clear since an immune-inflammatory context may preexist or coexist with cancer, as occurs in HCC. The aim of this study is to clarify the role of REG3A in liver carcinogenesis and to determine whether its carbohydrate-binding functions are involved. APPROACH AND RESULTS: This study provides evidence for a suppressive role of REG3A in HCC by reducing O -GlcNAcylation in 2 mouse models of HCC, in vitro cell studies, and clinical samples. REG3A expression in hepatocytes significantly reduced global O -GlcNAcylation and O -GlcNAcylation of c-MYC in preneoplastic and tumor livers and markedly inhibited HCC development in REG3A-c-MYC double transgenic mice and mice exposed to diethylnitrosamine. REG3A modified O -GlcNAcylation without altering the expression or activity of O-linked N-acetylglucosaminyltransferase, O-linked N-acetylglucosaminyl hydrolase, or glutamine fructose-6-phosphate amidotransferase. Reduced O -GlcNAcylation was consistent with decreased levels of UDP-GlcNAc in precancerous and cancerous livers. This effect was linked to the ability of REG3A to bind glucose and glucose-6 phosphate, suggested by a REG3A mutant unable to bind glucose and glucose-6 phosphate and alter O -GlcNAcylation. Importantly, patients with cirrhosis with high hepatic REG3A expression had lower levels of O -GlcNAcylation and longer cancer-free survival than REG3A-negative cirrhotic livers. CONCLUSIONS: REG3A helps fight liver cancer by reducing O -GlcNAcylation. This study suggests a new paradigm for the regulation of O -GlcNAc signaling in cancer-related pathways through interactions with the carbohydrate-binding function of REG3A.

2.
J Physiol Biochem ; 80(2): 363-379, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38393636

RESUMEN

The insulin receptor (IR) plays an important role in insulin signal transduction, the defect of which is believed to be the root cause of type 2 diabetes. In 3T3-L1 adipocytes as in other cell types, the mature IR is a heterotetrameric cell surface glycoprotein composed of two α subunits and two ß subunits. Our objective in our study, is to understand how the desialylation of N-glycan chains, induced by elastin-derived peptides, plays a major role in the function of the IR. Using the 3T3-L1 adipocyte line, we show that removal of the sialic acid from N-glycan chains (N893 and N908), induced by the elastin receptor complex (ERC) and elastin derived-peptides (EDPs), leads to a decrease in the autophosphorylation activity of the insulin receptor. We demonstrate by molecular dynamics approaches that the absence of sialic acids on one of these two sites is sufficient to generate local and general modifications of the structure of the IR. Biochemical approaches highlight a decrease in the interaction between insulin and its receptor when ERC sialidase activity is induced by EDPs. Therefore, desialylation by EDPs is synonymous with a decrease of IR sensitivity in adipocytes and could thus be a potential source of insulin resistance associated with diabetic conditions.


Asunto(s)
Células 3T3-L1 , Adipocitos , Elastina , Insulina , Receptor de Insulina , Receptores de Superficie Celular , Ácidos Siálicos , Animales , Receptor de Insulina/metabolismo , Ratones , Adipocitos/metabolismo , Insulina/metabolismo , Elastina/metabolismo , Ácidos Siálicos/metabolismo , Fosforilación , Resistencia a la Insulina , Simulación de Dinámica Molecular , Péptidos/metabolismo , Péptidos/farmacología , Péptidos/química , Ácido N-Acetilneuramínico/metabolismo , Transducción de Señal
3.
Sci Rep ; 12(1): 4464, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296731

RESUMEN

O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational modification on serine and threonine residues of cytosolic, nuclear and mitochondrial proteins. O-GlcNAcylation level is regulated by OGT (O-GlcNAc transferase), which adds GlcNAc on proteins, and OGA (O-GlcNAcase), which removes it. Abnormal level of protein O-GlcNAcylation has been observed in numerous cancer cell types, including cervical cancer cells. In the present study, we have evaluated the effect of increasing protein O-GlcNAcylation on cervical cancer-derived CaSki cells. We observed that pharmacological enhancement of protein O-GlcNAcylation by Thiamet G (an inhibitor of OGA) and glucosamine (which provides UDP-GlcNAc substrate to OGT) increases CaSki cells proliferation, migration and survival. Moreover, we showed that increased O-GlcNAcylation promotes IGF-1 receptor (IGF1R) autophosphorylation, possibly through inhibition of protein tyrosine-phosphatase 1B activity. This was associated with increased IGF-1-induced phosphatidyl-Inositol 3-phosphate production at the plasma membrane and increased Akt activation in CaSki cells. Finally, we showed that protein O-GlcNAcylation and Akt phosphorylation levels were higher in human cervical cancer samples compared to healthy cervix tissues, and a highly positive correlation was observed between O-GlcNAcylation level and Akt phosphorylation in theses tissues. Together, our results indicate that increased O-GlcNAcylation, by activating IGF1R/ Phosphatidyl inositol 3-Kinase (PI-3K)/Akt signaling, may participate in cervical cancer cell growth and proliferation.


Asunto(s)
Acetilglucosamina , Neoplasias del Cuello Uterino , Acetilglucosamina/metabolismo , Cuello del Útero/metabolismo , Femenino , Humanos , Inositol/metabolismo , N-Acetilglucosaminiltransferasas/genética , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Neoplasias del Cuello Uterino/metabolismo
4.
J Immunol ; 205(9): 2499-2510, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32978282

RESUMEN

Glycosylation with O-linked ß-N-acetylglucosamine (O-GlcNAcylation) is a reversible posttranslational modification that regulates the activity of intracellular proteins according to glucose availability and its metabolism through the hexosamine biosynthesis pathway. This modification has been involved in the regulation of various immune cell types, including macrophages. However, little is known concerning the mechanisms that regulate the protein O-GlcNAcylation level in these cells. In the present work, we demonstrate that LPS treatment induces a marked increase in protein O-GlcNAcylation in RAW264.7 cells, bone marrow-derived and peritoneal mouse macrophages, as well as human monocyte-derived macrophages. Targeted deletion of OGT in macrophages resulted in an increased effect of LPS on NOS2 expression and cytokine production, suggesting that O-GlcNAcylation may restrain inflammatory processes induced by LPS. The effect of LPS on protein O-GlcNAcylation in macrophages was associated with an increased expression and activity of glutamine fructose 6-phosphate amidotransferase (GFAT), the enzyme that catalyzes the rate-limiting step of the hexosamine biosynthesis pathway. More specifically, we observed that LPS potently stimulated GFAT2 isoform mRNA and protein expression. Genetic or pharmacological inhibition of FoxO1 impaired the LPS effect on GFAT2 expression, suggesting a FoxO1-dependent mechanism. We conclude that GFAT2 should be considered a new LPS-inducible gene involved in regulation of protein O-GlcNAcylation, which permits limited exacerbation of inflammation upon macrophage activation.


Asunto(s)
Acetilglucosamina/metabolismo , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Animales , Vías Biosintéticas/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Glicosilación/efectos de los fármacos , Humanos , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Células RAW 264.7
5.
6.
Exp Clin Endocrinol Diabetes ; 127(8): 517-523, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29890544

RESUMEN

O-linked-ß-N-Acetylglucosaminylation (O-GlcNAcylation), a reversible post-translational modification involved in diabetic complications, is regulated by only two enzymes, O-linked N-acetylglucosamine transferase (OGT) and ß-N-Acetylglucosaminidase (OGA). Increased OGA expression has been described previously in blood cells from patients with diabetes and was interpreted as an adaptative response to hyperglycemia-induced O-GlcNAcylation. OGA expression was thus proposed to have potential utility as a diagnostic marker. The present work was undertaken to determine whether determination of OGA enzymatic activity in blood cells could constitute a more rapidly accessible marker than OGA expression level measurements.Blood samples were obtained from patients with type 2 diabetes from the Department of Diabetology of the Cochin Hospital and healthy volunteers from the French blood Agency. OGA enzymatic activity and OGA mRNA expression levels were evaluated in leucocytes from patients with type 2 diabetes and from healthy donors.OGA activity was higher in leucocytes from patients with diabetes compared to control individuals. Surprisingly, OGA activity was not correlated hyperglycaemia markers (blood glucose, fructosamine, HbA1c) but was positively correlated with the inflammatory marker C-reactive protein. OGA mRNA levels were also increased in leucocytes from patients with diabetes and were correlated with mRNA coding for two pro-inflammatory proteins, TNFα and TxNIP.Therefore, OGA activity in leucocytes might be a more easily accessible biomarker than OGA expression levels. However, changes in OGA activity observed in patients with type 2 diabetes may reflect the inflammatory rather than the glycaemic status of these patients.


Asunto(s)
Antígenos de Neoplasias/sangre , Diabetes Mellitus Tipo 2/sangre , Regulación Enzimológica de la Expresión Génica , Histona Acetiltransferasas/sangre , Hialuronoglucosaminidasa/sangre , Leucocitos/enzimología , Adulto , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Fructosamina/sangre , Hemoglobina Glucada/metabolismo , Humanos , Leucocitos/patología , Masculino , Persona de Mediana Edad , ARN Mensajero/sangre
7.
Mol Metab ; 12: 76-88, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29735266

RESUMEN

OBJECTIVES: Neuraminidase 1 (NEU1) cleaves terminal sialic acids of glycoconjugates during lysosomal catabolism. It also modulates the structure and activity of cellular surface receptors affecting diverse pathways. Previously we demonstrated that NEU1 activates the insulin receptor (IR) and that NEU1-deficient CathAS190A-Neo mice (hypomorph of the NEU1 activator protein, cathepsin A/CathA) on a high-fat diet (HFD) develop hyperglycaemia and insulin resistance faster than wild-type animals. The major objective of the current work was to reveal the molecular mechanism by which NEU1 desialylation activates the IR and to test if increase of NEU1 activity in insulin target tissues reverses insulin resistance and glucose intolerance. METHODS: To test if desialylation causes a conformational change in the IR dimer we measured interaction between the receptor subunits by Bioluminescence Resonance Energy Transfer in the HEK293T cells either overexpressing NEU1 or treated with the NEU1 inhibitor. The influence of NEU1 overexpression on insulin resistance was studied in vitro in palmitate-treated HepG2 cells transduced with NEU1-expressing lentivirus and in vivo in C57Bl6 mice treated with HFD and either pharmacological inducer of NEU1, Ambroxol or NEU1-expressing adenovirus. NEU1-deficient CathAS190A-Neo mice were used as a control. RESULTS: By desialylation of IR, NEU1 induced formation of its active dimer leading to insulin signaling. Overexpression of NEU1 in palmitate-treated HepG2 cells restored insulin signaling, suggesting that increased NEU1 levels may reverse insulin resistance. Five-day treatment of glycemic C57Bl6 mice receiving HFD with the activator of the lysosomal gene network, Ambroxol, increased NEU1 expression and activity in muscle tissue, normalized fasting glucose levels, and improved physiological and molecular responses to glucose and insulin. Ambroxol did not improve insulin sensitivity in obese insulin-resistant CathAS190A-Neo mice indicating that the Ambroxol effect is mediated through NEU1 induction. Sustained increase of liver NEU1 activity through adenovirus-based gene transfer failed to attenuate insulin resistance most probably due to negative feedback regulation of IR expression. CONCLUSION: Together our results demonstrate that increase of NEU1 activity in insulin target tissues reverses insulin resistance and glucose intolerance suggesting that a pharmacological modulation of NEU1 activity may be potentially explored for restoring insulin sensitivity and resolving hyperglycemia associated with T2DM.


Asunto(s)
Resistencia a la Insulina , Neuraminidasa/metabolismo , Obesidad/metabolismo , Receptor de Insulina/metabolismo , Ambroxol/farmacología , Ambroxol/uso terapéutico , Animales , Células HEK293 , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Neuraminidasa/genética , Obesidad/tratamiento farmacológico
9.
PLoS Pathog ; 13(7): e1006518, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28742148

RESUMEN

The viral Tax oncoprotein plays a key role in both Human T-cell lymphotropic virus type 1 (HTLV-1)-replication and HTLV-1-associated pathologies, notably adult T-cell leukemia. Tax governs the transcription from the viral 5'LTR, enhancing thereby its own expression, via the recruitment of dimers of phosphorylated CREB to cAMP-response elements located within the U3 region (vCRE). In addition to phosphorylation, CREB is also the target of O-GlcNAcylation, another reversible post-translational modification involved in a wide range of diseases, including cancers. O-GlcNAcylation consists in the addition of O-linked-N-acetylglucosamine (O-GlcNAc) on Serine or Threonine residues, a process controlled by two enzymes: O-GlcNAc transferase (OGT), which transfers O-GlcNAc on proteins, and O-GlcNAcase (OGA), which removes it. In this study, we investigated the status of O-GlcNAcylation enzymes in HTLV-1-transformed T cells. We found that OGA mRNA and protein expression levels are increased in HTLV-1-transformed T cells as compared to control T cell lines while OGT expression is unchanged. However, higher OGA production coincides with a reduction in OGA specific activity, showing that HTLV-1-transformed T cells produce high level of a less active form of OGA. Introducing Tax into HEK-293T cells or Tax-negative HTLV-1-transformed TL-om1 T cells is sufficient to inhibit OGA activity and increase total O-GlcNAcylation, without any change in OGT activity. Furthermore, Tax interacts with the OGT/OGA complex and inhibits the activity of OGT-bound OGA. Pharmacological inhibition of OGA increases CREB O-GlcNAcylation as well as HTLV-1-LTR transactivation by Tax and CREB recruitment to the LTR. Moreover, overexpression of wild-type CREB but not a CREB protein mutated on a previously described O-GlcNAcylation site enhances Tax-mediated LTR transactivation. Finally, both OGT and OGA are recruited to the LTR. These findings reveal the interplay between Tax and the O-GlcNAcylation pathway and identify new key molecular actors involved in the assembly of the Tax-dependent transactivation complex.


Asunto(s)
Productos del Gen tax/metabolismo , Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Linfocitos T/virología , beta-N-Acetilhexosaminidasas/metabolismo , Acetilglucosamina/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación Viral de la Expresión Génica , Productos del Gen tax/genética , Infecciones por HTLV-I/enzimología , Infecciones por HTLV-I/genética , Infecciones por HTLV-I/metabolismo , Interacciones Huésped-Patógeno , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , N-Acetilglucosaminiltransferasas/genética , Procesamiento Proteico-Postraduccional , Linfocitos T/enzimología , Linfocitos T/metabolismo , Transcripción Genética , beta-N-Acetilhexosaminidasas/genética
10.
Arch Physiol Biochem ; 122(2): 54-60, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26707268

RESUMEN

CONTEXT: Insulin analogues are largely used for the treatment of diabetic patients, but concerns have been raised about their mitogenic/anti-apoptotic potential. It is therefore important to evaluate these analogues in different cell systems. OBJECTIVE: The aim of this work was to establish the pharmacological profiles of insulin analogues towards PI-3 kinase/Akt pathway in INS-1 ß-pancreatic cells. METHODS: Bioluminescence Resonance Energy Transfer (BRET), in cell western and caspase 3/7 assays, was used to study the effects of ligands. RESULTS: Among the five analogues evaluated, only glargine stimulated PI-3 kinase/Akt pathway with higher efficiency than insulin, whereas glargine's metabolite M1 was less efficient. However, glargine did not show higher anti-apoptotic efficiency than insulin. CONCLUSION: Glargine was more efficient than insulin for the activation of PI-3 kinase/Akt pathway, but not for the inhibition of caspase 3/7 activity. Moreover, glargine's metabolite M1 displayed lower efficiency than insulin towards PI-3 kinase/Akt activation and caspase 3/7 inhibition.


Asunto(s)
Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Insulina/análogos & derivados , Insulina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular , Insulina Glargina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Fosfatos de Fosfatidilinositol/biosíntesis , Ratas
12.
Biochem Biophys Res Commun ; 462(2): 151-8, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25944660

RESUMEN

O-GlcNAcylation is a reversible post-translational modification that regulates cytosolic and nuclear proteins. We and others previously demonstrated that FoxO1 is O-GlcNAcylated in different cell types, resulting in an increase in its transcriptional activity. Four O-GlcNAcylation sites were identified in human FOXO1 but directed mutagenesis of each site individually had modest (T317) or no effect (S550, T648, S654) on its O-GlcNAcylation status and transcriptional activity. Moreover, the consequences of mutating all four sites had not been investigated. In the present work, we mutated these sites in the mouse Foxo1 and found that mutation of all four sites did not decrease Foxo1 O-GlcNAcylation status and transcriptional activity, and would even tend to increase them. In an attempt to identify other O-GlcNAcylation sites, we immunoprecipitated wild-type O-GlcNAcylated Foxo1 and analysed the tryptic digest peptides by mass spectrometry using High-energy Collisional Dissociation. We identified T646 as a new O-GlcNAcylation site on Foxo1. However, site directed mutagenesis of this site individually or together with all four previously identified residues did not impair Foxo1 O-GlcNAcylation and transcriptional activity. These results suggest that residues important for the control of Foxo1 activity by O-GlcNAcylation still remain to be identified.


Asunto(s)
Factores de Transcripción Forkhead/química , Acetilglucosamina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Glicosilación , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem
13.
Biol Aujourdhui ; 208(2): 109-17, 2014.
Artículo en Francés | MEDLINE | ID: mdl-25190571

RESUMEN

O-GlcNAcylation corresponds to the addition of N-acetyl glucosamine (GlcNAc) on serine or threonine residues of cytosolic and nuclear proteins. This reversible post-translational modification regulates protein phosphorylation, sub-cellular localisation, stability and activity. Only two enzymes, OGT (O-linked N-acetyl-glucosaminyltransferase) and OGA (O-linked N-acetyl-ß-D glucosaminidase), control the addition and removal of GlcNAc from more than a thousand of proteins. Alternative splicing generates different isoforms of OGT and OGA, and address these enzymes to different sub-cellular compartments (mitochondria, cytosol...), restraining their action to specific subsets of substrates. Moreover, interaction with adaptor proteins may also help address these enzymes to specific substrates. Alterations in protein O-GlcNAcylation have been observed in a number of important human diseases, such as Alzheimer, cancer and diabetes. A reciprocal relationship between Tau protein phosphorylation and O-GlcNAcylation has been observed, and decreased O-GlcNAcylation in the brain of patients with Alzheimer diseases may favour Tau aggregation, destabilisation of microtubules and neuronal alterations. Alterations in OGT/OGA expression levels, and in protein O-GlcNAcylation, have been described in different types of cancer, and much evidence indicates that O-GlcNAcylation may participate in abnormal proliferation and migration of cancer cells. O-GlcNAcylation of transcription factors and signalling effectors may also participate in defects observed in diabetes. Indeed, in situation of chronic hyperglycaemia, abnormal O-GlcNAcylation may have deleterious effect on insulin secretion and action, resulting in further impairment of glucose homeostasis. Therefore, O-GlcNAcylation appears to be a major regulator of cellular activities and may play an important part in different human diseases. However, because of the large spectrum of OGT and OGA substrates, targeting O-GlcNAc for treatment of these diseases will be a highly challenging task.


Asunto(s)
Acetilglucosamina/metabolismo , Enfermedad/etiología , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Animales , Citosol/metabolismo , Hexosaminidasas/fisiología , Humanos , N-Acetilglucosaminiltransferasas/fisiología , Proteínas Nucleares/metabolismo , Transducción de Señal/fisiología
14.
Med Sci (Paris) ; 30(6-7): 675-8, 2014.
Artículo en Francés | MEDLINE | ID: mdl-25014460

RESUMEN

The debate between reductionism and anti-reductionism, dealing with the ultimate constituents of the world, is one of the fundamental issues in the philosophy of science. However, in biology, reductionism is less of an ontological and more of an epistemological question: it argues that the explanation of biological processes resides in deciphering the genetic code of living entities. This position is still prevalent in cancer biology, which has long been defined as a cellular process where genetic alterations are responsible for aberrant proliferation. While the hypothesis of somatic mutations remains the central theoretical model, a bundle of experimental data reveals how important the disturbances of tissue organisation are in cancer development, leading to a renewal of holistic and organicist approaches. This latter perspective in particular attempts to contextualise and rethink the centrality of the genetic level by proposing a new conception of cancerogenesis as a tissue disease.


Asunto(s)
Investigación Biomédica , Modelos Teóricos , Neoplasias , Animales , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Microambiente Celular , Femenino , Humanos , Ratones , Neoplasias/etiología , Neoplasias/patología , Neoplasias/terapia , Oncogenes/fisiología , Filosofía , Probabilidad , Riesgo
15.
PLoS One ; 9(3): e92737, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24647478

RESUMEN

Stimulation of tyrosine kinase receptors initiates a signaling cascade that activates PI3K. Activated PI3K uses PIP2 to generate PIP3, which recruit Akt to the plasma membrane through its pleckstrin homology (PH) domain, permitting its activation by PDKs. Activated Akt controls important biological functions, including cell metabolism, proliferation and survival. The PI3K pathway is therefore an attractive target for drug discovery. However, current assays for measurement of PIP3 production are technically demanding and not amenable to high-throughput screening. We have established a MCF-7-derived breast cancer cell line, that stably co-expresses the PH domain of Akt fused to Renilla luciferase and YFP fused to a membrane localization signal. This BRET biosensor pair permits to monitor, in real time, in living cells, PIP3 production at the plasma membrane upon stimulation by different ligands, including insulin, the insulin analogue glargine, IGF1, IGF2 and EGF. Moreover, several known inhibitors that target different steps of the PI3K/Akt pathway caused inhibition of ligand-induced BRET. Cetuximab, a humanized anti-EGF receptor monoclonal antibody used for the treatment of cancer, completely inhibited EGF-induced BRET, and the tyrosine kinase inhibitor tyrphostine AG1024 inhibited insulin effect on PIP3 production. Moreover, the effects of insulin and IGF1 were inhibited by molecules that inhibit PI3K catalytic activity or the interaction between PIP3 and the PH domain of Akt. Finally, we showed that human serum induced a dose-dependent increase in BRET signal, suggesting that this stable clone may be used as a prognostic tool to evaluate the PI3K stimulatory activity present in serum of human patients. We have thus established a cell line, suitable for the screening and/or the study of molecules with stimulatory or inhibitory activities on the PI3K/Akt pathway that will constitute a new tool for translational research in diabetes and cancer.


Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Técnicas Biosensibles/métodos , Fosfatos de Fosfatidilinositol/análisis , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Humanos
16.
FASEB J ; 28(2): 1010-21, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24174424

RESUMEN

O-GlcNAcylation on serine/threonine is a post-translational modification that controls the activity of nucleocytoplasmic proteins according to glucose availability. We previously showed that O-GlcNAcylation of FoxO1 in liver cells increases its transcriptional activity. In the present study, we evaluated the potential involvement of FoxO1 O-GlcNAcylation in the context of pancreatic ß-cell glucotoxicity. FoxO1 was O-GlcNAcylated in INS-1 832/13 ß cells and isolated rat pancreatic islets. O-GlcNAcylation of FoxO1 resulted in a 2-fold increase in its transcriptional activity toward a FoxO1 reporter gene and a 3-fold increase in the expression of the insulin-like growth factor-binding protein 1 (Igfbp1) gene at the mRNA level, resulting in IGFBP1 protein oversecretion by the cells. Of note, increased IGFBP1 in the culture medium inhibited the activity of the insulin-like growth factor 1 receptor (IGF1R)/phosphatidyl inositol 3 kinase (PI3K)/Akt pathway. We reveal in this report a novel mechanism by which O-GlcNAcylation inhibits Akt activity through an autocrine mechanism. However, although inhibition of IGFBP1 expression using siRNA restored the PI3 kinase/Akt pathway, it did not rescue INS-1 832/13 cells from high-glucose- or O-glcNAcylation-induced cell death. In contrast, FoxO1 down-regulation by siRNA led to 30 to 60% protection of INS-1 832/13 cells from death mediated by glucotoxic conditions. Therefore, whereas FoxO1 O-GlcNAcylation inhibits Akt through an IGFBP1-mediated autocrine pathway, the deleterious effects of FoxO1 O-GlcNAcylation on cell survival appeared to be independent of this pathway.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis/genética , Glucosa/farmacología , Inmunoprecipitación , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Ratas
17.
Artículo en Inglés | MEDLINE | ID: mdl-23964270

RESUMEN

O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational modification consisting in the addition of a sugar moiety to serine/threonine residues of cytosolic or nuclear proteins. Catalyzed by O-GlcNAc-transferase (OGT) and removed by O-GlcNAcase, this dynamic modification is dependent on environmental glucose concentration. O-GlcNAcylation regulates the activities of a wide panel of proteins involved in almost all aspects of cell biology. As a nutrient sensor, O-GlcNAcylation can relay the effects of excessive nutritional intake, an important cancer risk factor, on protein activities and cellular functions. Indeed, O-GlcNAcylation has been shown to play a significant role in cancer development through different mechanisms. O-GlcNAcylation and OGT levels are increased in different cancers (breast, prostate, colon…) and vary during cell cycle progression. Modulating their expression or activity can alter cancer cell proliferation and/or invasion. Interestingly, major oncogenic factors have been shown to be directly O-GlcNAcylated (p53, MYC, NFκB, ß-catenin…). Furthermore, chromatin dynamics is modulated by O-GlcNAc. DNA methylation enzymes of the Tet family, involved epigenetic alterations associated with cancer, were recently found to interact with and target OGT to multi-molecular chromatin-remodeling complexes. Consistently, histones are subjected to O-GlcNAc modifications which regulate their function. Increasing number of evidences point out the central involvement of O-GlcNAcylation in tumorigenesis, justifying the attention received as a potential new approach for cancer treatment. However, comprehension of the underlying mechanism remains at its beginnings. Future challenge will be to address directly the role of O-GlcNAc-modified residues in oncogenic-related proteins to eventually propose novel strategies to alter cancer development and/or progression.

18.
PLoS One ; 8(7): e69150, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935944

RESUMEN

O-GlcNAcylation (addition of N-acetyl-glucosamine on serine or threonine residues) is a post-translational modification that regulates stability, activity or localization of cytosolic and nuclear proteins. O-linked N-acetylgluocosmaine transferase (OGT) uses UDP-GlcNAc, produced in the hexosamine biosynthetic pathway to O-GlcNacylate proteins. Removal of O-GlcNAc from proteins is catalyzed by the ß-N-Acetylglucosaminidase (OGA). Recent evidences suggest that O-GlcNAcylation may affect the growth of cancer cells. However, the consequences of O-GlcNAcylation on anti-cancer therapy have not been evaluated. In this work, we studied the effects of O-GlcNAcylation on tamoxifen-induced cell death in the breast cancer-derived MCF-7 cells. Treatments that increase O-GlcNAcylation (PUGNAc and/or glucosoamine) protected MCF-7 cells from death induced by tamoxifen. In contrast, inhibition of OGT expression by siRNA potentiated the effect of tamoxifen on cell death. Since the PI-3 kinase/Akt pathway is a major regulator of cell survival, we used BRET to evaluate the effect of PUGNAc+glucosamine on PIP3 production. We observed that these treatments stimulated PIP3 production in MCF-7 cells. This effect was associated with an increase in Akt phosphorylation. However, the PI-3 kinase inhibitor LY294002, which abolished the effect of PUGNAc+glucosamine on Akt phosphorylation, did not impair the protective effects of PUGNAc+glucosamine against tamoxifen-induced cell death. These results suggest that the protective effects of O-GlcNAcylation are independent of the PI-3 kinase/Akt pathway. As tamoxifen sensitivity depends on the estrogen receptor (ERα) expression level, we evaluated the effect of PUGNAc+glucosamine on the expression of this receptor. We observed that O-GlcNAcylation-inducing treatment significantly reduced the expression of ERα mRNA and protein, suggesting a potential mechanism for the decreased tamoxifen sensitivity induced by these treatments. Therefore, our results suggest that inhibition of O-GlcNAcylation may constitute an interesting approach to improve the sensitivity of breast cancer to anti-estrogen therapy.


Asunto(s)
Neoplasias de la Mama/genética , Resistencia a Antineoplásicos , Receptor alfa de Estrógeno/genética , Regulación Neoplásica de la Expresión Génica , Procesamiento Proteico-Postraduccional , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tamoxifeno/farmacología , Acetilglucosamina/análogos & derivados , Acetilglucosamina/farmacología , Antineoplásicos Hormonales/farmacología , Vías Biosintéticas , Neoplasias de la Mama/metabolismo , Muerte Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hexosaminas/biosíntesis , Humanos , Factor I del Crecimiento Similar a la Insulina/farmacología , Células MCF-7 , Oximas/farmacología , Fenilcarbamatos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Tamoxifeno/análogos & derivados
19.
Diabetes ; 62(7): 2338-46, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23520133

RESUMEN

Neuraminidases (sialidases) catalyze the removal of sialic acid residues from sialylated glycoconjugates. We now report that mammalian neuraminidase 1 (Neu1), in addition to its catabolic function in lysosomes, is transported to the cell surface where it is involved in the regulation of insulin signaling. Insulin binding to its receptor rapidly induces interaction of the receptor with Neu1, which hydrolyzes sialic acid residues in the glycan chains of the receptor and, consequently, induces its activation. Cells from sialidosis patients with a genetic deficiency of Neu1 show impairment of insulin-induced phosphorylation of downstream protein kinase AKT, and treatment of these cells with purified Neu1 restores signaling. Genetically modified mice with ∼10% of the normal Neu1 activity exposed to a high-fat diet develop hyperglycemia and insulin resistance twice as fast as their wild-type counterparts. Together, these studies identify Neu1 as a novel component of the signaling pathways of energy metabolism and glucose uptake.


Asunto(s)
Insulina/metabolismo , Mucolipidosis/metabolismo , Neuraminidasa/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Dieta Alta en Grasa , Metabolismo Energético/fisiología , Fibroblastos/metabolismo , Prueba de Tolerancia a la Glucosa , Células HEK293 , Humanos , Insulina/genética , Ratones , Ratones Noqueados , Mucolipidosis/genética , Neuraminidasa/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
20.
PLoS One ; 7(7): e41992, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848683

RESUMEN

BACKGROUND: In diabetic patients, the pharmacokinetics of injected human insulin does not permit optimal control of glycemia. Fast and slow acting insulin analogues have been developed, but they may have adverse properties, such as increased mitogenic or anti-apoptotic signaling. Insulin/IGF1 hybrid receptors (IR/IGF1R), present in most tissues, have been proposed to transmit biological effects close to those of IGF1R. However, the study of hybrid receptors is difficult because of the presence of IR and IGF1R homodimers. Our objective was to perform the first study on the pharmacological properties of the five marketed insulin analogues towards IR/IGF1R hybrids. METHODOLOGY: To study the effect of insulin analogues on IR/IGF1R hybrids, we used our previously developed Bioluminescence Resonance Energy Transfer (BRET) assay that permits specific analysis of the pharmacological properties of hybrid receptors. Moreover, we have developed a new, highly sensitive BRET-based assay to monitor phophatidylinositol-3 phosphate (PIP(3)) production in living cells. Using this assay, we performed a detailed pharmacological analysis of PIP(3) production induced by IGF1, insulin and insulin analogues in living breast cancer-derived MCF-7 and MDA-MB231 cells. RESULTS: Among the five insulin analogues tested, only glargine stimulated IR/IGF1R hybrids with an EC50 that was significantly lower than insulin and close to that of IGF1. Glargine more efficiently stimulated PIP(3) production in MCF-7 cells but not in MDA-MB231 cells as compared to insulin. In contrast, glargine metabolites M1 and M2 showed lower potency for hybrid receptors stimulation, PIP(3) production, Akt and Erk1/2 phosphorylation and DNA synthesis in MCF-7 cells, compared to insulin. CONCLUSION: Glargine, possibly acting through IR/IGF1R hybrids, displays higher potency, whereas its metabolites M1 and M2 display lower potency than insulin for the stimulation of proliferative/anti-apoptotic pathways in MCF-7 cells.


Asunto(s)
Insulina de Acción Prolongada/metabolismo , Insulina de Acción Prolongada/farmacología , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Células HEK293 , Humanos , Insulina Glargina , Células MCF-7 , Fosfatos de Fosfatidilinositol/biosíntesis , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA