Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7334, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409284

RESUMEN

Exposure to cosmic ionizing radiation is an innate risk of the spaceflight environment that can cause DNA damage and altered cellular function. In astronauts, longitudinal monitoring of physiological systems and interactions between these systems are important to consider for mitigation strategies. In addition, assessments of sex-specific biological responses in the unique environment of spaceflight are vital to support future exploration missions that include both females and males. Here we assessed sex-specific, multi-system immune and endocrine responses to simulated cosmic radiation. For this, 24-week-old, male and female C57Bl/6J mice were exposed to simplified five-ion, space-relevant galactic cosmic ray (GCRsim) radiation at 15 and 50 cGy, to simulate predicted radiation exposures that would be experienced during lunar and Martian missions, respectively. Blood and adrenal tissues were collected at 3- and 14-days post-irradiation for analysis of immune and endocrine biosignatures and pathways. Sexually dimorphic adrenal gland weights and morphology, differential total RNA expression with corresponding gene ontology, and unique immune phenotypes were altered by GCRsim. In brief, this study offers new insights into sexually dimorphic immune and endocrine kinetics following simulated cosmic radiation exposure and highlights the necessity for personalized translational approaches for astronauts during exploration missions.


Asunto(s)
Radiación Cósmica , Marte , Vuelo Espacial , Ratones , Masculino , Femenino , Animales , Medio Ambiente Extraterrestre , Caracteres Sexuales , Radiación Ionizante , Astronautas , Radiación Cósmica/efectos adversos , Inmunidad
2.
iScience ; 27(1): 108759, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38261932

RESUMEN

While fruit flies (Drosophila melanogaster) and humans exhibit immune system dysfunction in space, studies examining their immune systems' interactions with natural parasites in space are lacking. Drosophila parasitoid wasps modify blood cell function to suppress host immunity. In this study, naive and parasitized ground and space flies from a tumor-free control and a blood tumor-bearing mutant strain were examined. Inflammation-related genes were activated in space in both fly strains. Whereas control flies did not develop tumors, tumor burden increased in the space-returned tumor-bearing mutants. Surprisingly, control flies were more sensitive to spaceflight than mutant flies; many of their essential genes were downregulated. Parasitoids appeared more resilient than fly hosts, and spaceflight did not significantly impact wasp survival or the expression of their virulence genes. Previously undocumented mutant wasps with novel wing color and wing shape were isolated post-flight and will be invaluable for host-parasite studies on Earth.

3.
J Hepatol ; 80(2): 335-351, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37879461

RESUMEN

The worldwide prevalence of non-alcoholic steatohepatitis (NASH) is increasing, causing a significant medical burden, but no approved therapeutics are currently available. NASH drug development requires histological analysis of liver biopsies by expert pathologists for trial enrolment and efficacy assessment, which can be hindered by multiple issues including sample heterogeneity, inter-reader and intra-reader variability, and ordinal scoring systems. Consequently, there is a high unmet need for accurate, reproducible, quantitative, and automated methods to assist pathologists with histological analysis to improve the precision around treatment and efficacy assessment. Digital pathology (DP) workflows in combination with artificial intelligence (AI) have been established in other areas of medicine and are being actively investigated in NASH to assist pathologists in the evaluation and scoring of NASH histology. DP/AI models can be used to automatically detect, localise, quantify, and score histological parameters and have the potential to reduce the impact of scoring variability in NASH clinical trials. This narrative review provides an overview of DP/AI tools in development for NASH, highlights key regulatory considerations, and discusses how these advances may impact the future of NASH clinical management and drug development. This should be a high priority in the NASH field, particularly to improve the development of safe and effective therapeutics.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Hígado/patología , Inteligencia Artificial , Biopsia , Prevalencia
4.
Hepatology ; 80(1): 173-185, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38112484

RESUMEN

BACKGROUND AND AIMS: Artificial intelligence-powered digital pathology offers the potential to quantify histological findings in a reproducible way. This analysis compares the evaluation of histological features of NASH between pathologists and a machine-learning (ML) pathology model. APPROACH AND RESULTS: This post hoc analysis included data from a subset of patients (n=251) with biopsy-confirmed NASH and fibrosis stage F1-F3 from a 72-week randomized placebo-controlled trial of once-daily subcutaneous semaglutide 0.1, 0.2, or 0.4 mg (NCT02970942). Biopsies at baseline and week 72 were read by 2 pathologists. Digitized biopsy slides were evaluated by PathAI's NASH ML models to quantify changes in fibrosis, steatosis, inflammation, and hepatocyte ballooning using categorical assessments and continuous scores. Pathologist and ML-derived categorical assessments detected a significantly greater percentage of patients achieving the primary endpoint of NASH resolution without worsening of fibrosis with semaglutide 0.4 mg versus placebo (pathologist 58.5% vs. 22.0%, p < 0.0001; ML 36.9% vs. 11.9%; p =0.0015). Both methods detected a higher but nonsignificant percentage of patients on semaglutide 0.4 mg versus placebo achieving the secondary endpoint of liver fibrosis improvement without NASH worsening. ML continuous scores detected significant treatment-induced responses in histological features, including a quantitative reduction in fibrosis with semaglutide 0.4 mg versus placebo ( p =0.0099) that could not be detected using pathologist or ML categorical assessment. CONCLUSIONS: ML categorical assessments reproduced pathologists' results of histological improvement with semaglutide for steatosis and disease activity. ML-based continuous scores demonstrated an antifibrotic effect not measured by conventional histopathology.


Asunto(s)
Inteligencia Artificial , Péptidos Similares al Glucagón , Hígado , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Péptidos Similares al Glucagón/uso terapéutico , Péptidos Similares al Glucagón/administración & dosificación , Femenino , Masculino , Persona de Mediana Edad , Biopsia , Hígado/patología , Hígado/efectos de los fármacos , Adulto , Aprendizaje Automático , Cirrosis Hepática/patología , Cirrosis Hepática/tratamiento farmacológico
5.
Aliment Pharmacol Ther ; 58(10): 1005-1015, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37718721

RESUMEN

BACKGROUND: An approved therapy for nonalcoholic steatohepatitis (NASH) and fibrosis remains a major unmet medical need. AIM: To investigate the histological and metabolic benefits of pegozafermin, a glycoPEGylated FGF21 analogue, in subjects with biopsy-confirmed NASH. METHODS: This proof-of-concept, open-label, single-cohort study, part 2 of a phase 1b/2a clinical trial, was conducted at 16 centres in the United States. Adults (age 21-75 years) with NASH (stage 2 or 3 fibrosis, NAS≥4) and magnetic resonance imaging proton density fat fraction (MRI-PDFF) ≥8% received subcutaneous pegozafermin 27 mg once weekly for 20 weeks. Primary outcomes were improvements in liver histology, and safety and tolerability. RESULTS: Of 20 enrolled subjects, 19 completed the study. Twelve subjects (63%) met the primary endpoint of ≥2-point improvement in NAFLD activity score with ≥1-point improvement in ballooning or lobular inflammation and no worsening of fibrosis. Improvement of fibrosis without worsening of NASH was observed in 26% of subjects, and NASH resolution without worsening of fibrosis in 32%. Least-squares mean relative change from baseline in MRI-PDFF was -64.7% (95% CI: -71.7, -57.7; p < 0.0001). Significant improvements from baseline were also seen in serum aminotransferases, noninvasive fibrosis tests, serum lipids, glycaemic control and body weight. Adverse events (AEs) were reported in 18 subjects (90%). The most frequently reported AEs were mild/moderate nausea and diarrhoea. There were no serious AEs, discontinuations due to AEs, or deaths. CONCLUSIONS: Pegozafermin treatment for 20 weeks had beneficial effects on hepatic and metabolic parameters and was well tolerated in subjects with NASH. CLINICALTRIALS: gov: NCT04048135.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Adulto , Humanos , Adulto Joven , Persona de Mediana Edad , Anciano , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Estudios de Cohortes , Hígado/diagnóstico por imagen , Hígado/patología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Biopsia
6.
Front Surg ; 9: 952348, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268215

RESUMEN

Sensorineural hearing loss (SNHL), which typically arises from the inner ear, is the most common sensory deficit worldwide. The traditional method for studying pathophysiology underlying human SNHL involves histological processing of the inner ear from temporal bones collected during autopsy. Histopathological analysis is destructive and limits future use of a given specimen. Non-destructive strategies for the study of the inner ear are urgently needed to fully leverage the utility of each specimen because access to human temporal bones is increasingly difficult and these precious specimens are required to uncover disease mechanisms and to enable development of new devices. We highlight the potential of reversible iodine staining for micro-computed tomography imaging of the human inner ear. This approach provides reversible, high-resolution visualization of intracochlear structures and is becoming more rapid and accessible.

7.
PLoS Genet ; 17(4): e1009112, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33819264

RESUMEN

We previously identified a deletion on chromosome 16p12.1 that is mostly inherited and associated with multiple neurodevelopmental outcomes, where severely affected probands carried an excess of rare pathogenic variants compared to mildly affected carrier parents. We hypothesized that the 16p12.1 deletion sensitizes the genome for disease, while "second-hits" in the genetic background modulate the phenotypic trajectory. To test this model, we examined how neurodevelopmental defects conferred by knockdown of individual 16p12.1 homologs are modulated by simultaneous knockdown of homologs of "second-hit" genes in Drosophila melanogaster and Xenopus laevis. We observed that knockdown of 16p12.1 homologs affect multiple phenotypic domains, leading to delayed developmental timing, seizure susceptibility, brain alterations, abnormal dendrite and axonal morphology, and cellular proliferation defects. Compared to genes within the 16p11.2 deletion, which has higher de novo occurrence, 16p12.1 homologs were less likely to interact with each other in Drosophila models or a human brain-specific interaction network, suggesting that interactions with "second-hit" genes may confer higher impact towards neurodevelopmental phenotypes. Assessment of 212 pairwise interactions in Drosophila between 16p12.1 homologs and 76 homologs of patient-specific "second-hit" genes (such as ARID1B and CACNA1A), genes within neurodevelopmental pathways (such as PTEN and UBE3A), and transcriptomic targets (such as DSCAM and TRRAP) identified genetic interactions in 63% of the tested pairs. In 11 out of 15 families, patient-specific "second-hits" enhanced or suppressed the phenotypic effects of one or many 16p12.1 homologs in 32/96 pairwise combinations tested. In fact, homologs of SETD5 synergistically interacted with homologs of MOSMO in both Drosophila and X. laevis, leading to modified cellular and brain phenotypes, as well as axon outgrowth defects that were not observed with knockdown of either individual homolog. Our results suggest that several 16p12.1 genes sensitize the genome towards neurodevelopmental defects, and complex interactions with "second-hit" genes determine the ultimate phenotypic manifestation.


Asunto(s)
Encéfalo/metabolismo , Deleción Cromosómica , Cromosomas Humanos Par 16/genética , Trastornos del Neurodesarrollo/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Encéfalo/patología , Canales de Calcio/genética , Moléculas de Adhesión Celular/genética , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epistasis Genética/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Metiltransferasas/genética , Trastornos del Neurodesarrollo/patología , Proteínas Nucleares/genética , Fosfohidrolasa PTEN/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética
8.
Hear Res ; 382: 107785, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31493568

RESUMEN

Sensorineural hearing loss (SNHL) is an extraordinarily common disability, affecting 466 million people across the globe. Half of these incidents are attributed to genetic mutations that disrupt the structure and function of the cochlea. The human cochlea's interior cannot be imaged or biopsied without damaging hearing; thus, everything known about the morphologic correlates of hereditary human deafness comes from histopathologic studies conducted in either cadaveric human temporal bone specimens or animal models of genetic deafness. The purpose of the present review is to a) summarize the findings from all published histopathologic studies conducted in human temporal bones with known SNHL-causing genetic mutations, and b) compare the reported phenotypes of human vs. mouse SNHL caused by the same genetic mutation. The fact that human temporal bone histopathologic analysis has been reported for only 22 of the nearly 200 identified deafness-causing genes suggests a great need for alternative and improved techniques for studying human hereditary deafness; in light of this, the present review concludes with a summary of promising future directions, specifically in the fields of high resolution cochlear imaging, intracochlear fluid biopsy, and gene therapy.


Asunto(s)
Cóclea/patología , Pérdida Auditiva Sensorineural/genética , Audición/genética , Mutación , Animales , Cóclea/fisiopatología , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Terapia Genética , Pérdida Auditiva Sensorineural/patología , Pérdida Auditiva Sensorineural/fisiopatología , Pérdida Auditiva Sensorineural/terapia , Humanos , Ratones Mutantes , Fenotipo , Especificidad de la Especie
9.
Front Neurol ; 10: 1353, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32116980

RESUMEN

Tumor necrosis factor-alpha (TNF-α) is a proinflammatory cytokine that plays a prominent role in the nervous system, mediating a range of physiologic and pathologic functions. In the auditory system, elevated levels of TNF-α have been implicated in several types of sensorineural hearing loss, including sensorineural hearing loss induced by vestibular schwannoma, a potentially fatal intracranial tumor that originates from the eighth cranial nerve; however, the mechanisms underlying the tumor's deleterious effects on hearing are not well-understood. Here, we investigated the effect of acute elevations of TNF-α in the inner ear on cochlear function and morphology by perfusing the cochlea with TNF-α in vivo in guinea pigs. TNF-α perfusion did not significantly change thresholds for compound action potential (CAP) responses, which reflect cochlear nerve activity, or distortion product otoacoustic emissions, which reflect outer hair cell integrity. However, intracochlear TNF-α perfusion reduced CAP amplitudes and increased the number of inner hair cell synapses without paired post-synaptic terminals, suggesting a pattern of synaptic degeneration that resembles that observed in primary cochlear neuropathy. Additionally, etanercept, a TNF-α blocker, protected against TNF-α-induced synaptopathy when administered systemically prior to intracochlear TNF-α perfusion. Findings motivate further investigation into the harmful effects of chronically elevated intracochlear levels of TNF-α, and the potential for etanercept to counter these effects.

10.
Biomed Opt Express ; 9(8): 3757-3767, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30338153

RESUMEN

The gold standard method for visualizing the pathologies underlying human sensorineural hearing loss has remained post-mortem histology for over 125 years, despite awareness that histological preparation induces severe artifacts in biological tissue. Historically, the transition from post-mortem assessment to non-invasive clinical biomedical imaging in living humans has revolutionized diagnosis and treatment of disease; however, innovation in non-invasive techniques for cellular-level intracochlear imaging in humans has been difficult due to the cochlea's small size, complex 3D configuration, fragility, and deep encasement within bone. Here we investigate the ability of synchrotron radiation-facilitated X-ray absorption and phase contrast imaging to enable visualization of sensory cells and nerve fibers in the cochlea's sensory epithelium in situ in 3D intact, non-decalcified, unstained human temporal bones. Our findings show that this imaging technique resolves the bone-encased sensory epithelium's cytoarchitecture with unprecedented levels of cellular detail for an intact, unstained specimen, and is capable of distinguishing between healthy and damaged epithelium. All analyses were performed using commercially available software that quickly reconstructs and facilitates 3D manipulation of massive data sets. Results suggest that synchrotron radiation phase contrast imaging has the future potential to replace histology as a gold standard for evaluating intracochlear structural integrity in human specimens, and motivate further optimization for translation to the clinic.

11.
Sci Rep ; 6: 33288, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27633610

RESUMEN

The mammalian cochlea has historically resisted attempts at high-resolution, non-invasive imaging due to its small size, complex three-dimensional structure, and embedded location within the temporal bone. As a result, little is known about the relationship between an individual's cochlear pathology and hearing function, and otologists must rely on physiological testing and imaging methods that offer limited resolution to obtain information about the inner ear prior to performing surgery. Micro-optical coherence tomography (µOCT) is a non-invasive, low-coherence interferometric imaging technique capable of resolving cellular-level anatomic structures. To determine whether µOCT is capable of resolving mammalian intracochlear anatomy, fixed guinea pig inner ears were imaged as whole temporal bones with cochlea in situ. Anatomical structures such as the tunnel of Corti, space of Nuel, modiolus, scalae, and cell groupings were visualized, in addition to individual cell types such as neuronal fibers, hair cells, and supporting cells. Visualization of these structures, via volumetrically-reconstructed image stacks and endoscopic perspective videos, represents an improvement over previous efforts using conventional OCT. These are the first µOCT images of mammalian cochlear anatomy, and they demonstrate µOCT's potential utility as an imaging tool in otology research.


Asunto(s)
Células Ciliadas Auditivas/ultraestructura , Órgano Espiral/diagnóstico por imagen , Ventana Redonda/diagnóstico por imagen , Rampa Timpánica/diagnóstico por imagen , Escala Vestibular/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Animales , Cobayas , Células Ciliadas Auditivas/fisiología , Audición/fisiología , Procesamiento de Imagen Asistido por Computador , Células Laberínticas de Soporte/fisiología , Células Laberínticas de Soporte/ultraestructura , Masculino , Órgano Espiral/anatomía & histología , Órgano Espiral/fisiología , Ventana Redonda/anatomía & histología , Ventana Redonda/fisiología , Rampa Timpánica/anatomía & histología , Rampa Timpánica/fisiología , Escala Vestibular/anatomía & histología , Escala Vestibular/fisiología , Tomografía de Coherencia Óptica/instrumentación
12.
G3 (Bethesda) ; 6(5): 1427-37, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-26994292

RESUMEN

About two-thirds of the vital genes in the Drosophila genome are involved in eye development, making the fly eye an excellent genetic system to study cellular function and development, neurodevelopment/degeneration, and complex diseases such as cancer and diabetes. We developed a novel computational method, implemented as Flynotyper software (http://flynotyper.sourceforge.net), to quantitatively assess the morphological defects in the Drosophila eye resulting from genetic alterations affecting basic cellular and developmental processes. Flynotyper utilizes a series of image processing operations to automatically detect the fly eye and the individual ommatidium, and calculates a phenotypic score as a measure of the disorderliness of ommatidial arrangement in the fly eye. As a proof of principle, we tested our method by analyzing the defects due to eye-specific knockdown of Drosophila orthologs of 12 neurodevelopmental genes to accurately document differential sensitivities of these genes to dosage alteration. We also evaluated eye images from six independent studies assessing the effect of overexpression of repeats, candidates from peptide library screens, and modifiers of neurotoxicity and developmental processes on eye morphology, and show strong concordance with the original assessment. We further demonstrate the utility of this method by analyzing 16 modifiers of sine oculis obtained from two genome-wide deficiency screens of Drosophila and accurately quantifying the effect of its enhancers and suppressors during eye development. Our method will complement existing assays for eye phenotypes, and increase the accuracy of studies that use fly eyes for functional evaluation of genes and genetic interactions.


Asunto(s)
Drosophila melanogaster/genética , Ojo , Estudios de Asociación Genética , Fenotipo , Algoritmos , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ojo/anatomía & histología , Ojo/ultraestructura , Técnicas de Silenciamiento del Gen , Modelos Genéticos , Neurogénesis/genética , Reproducibilidad de los Resultados
13.
Planta ; 226(6): 1525-33, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17653759

RESUMEN

Root-knot nematodes (Meloidogyne spp.) are obligate, sedentary endoparasites that infect many plant species causing large economic losses worldwide. Available nematicides are being banned due to their toxicity or ozone-depleting properties and alternative control strategies are urgently required. We have produced transgenic tobacco (Nicotiana tabacum) plants expressing different dsRNA hairpin structures targeting a root-knot nematode (Meloidogyne javanica) putative transcription factor, MjTis11. We provide evidence that MjTis11 was consistently silenced in nematodes feeding on the roots of transgenic plants. The observed silencing was specific for MjTis11, with other sequence-unrelated genes being unaffected in the nematodes. Those transgenic plants able to induce silencing of MjTis11, also showed the presence of small interfering RNAs. Even though down-regulation of MjTis11 did not result in a lethal phenotype, this study demonstrates the feasibility of silencing root-knot nematode genes by expressing dsRNA in the host plant. Host-delivered RNA interference-triggered (HD-RNAi) silencing of parasite genes provides a novel disease resistance strategy with wide biotechnological applications. The potential of HD-RNAi is not restricted to parasitic nematodes but could be adapted to control other plant-feeding pests.


Asunto(s)
Nematodos/genética , Nicotiana/genética , Interferencia de ARN , ARN Bicatenario/genética , Animales , Northern Blotting , Caenorhabditis elegans/clasificación , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Genes de Helminto/genética , Interacciones Huésped-Patógeno/genética , Nematodos/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Plantas Modificadas Genéticamente , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nicotiana/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA