Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Rep Med ; 3(6): 100541, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35732148

RESUMEN

The chemotherapy resistance of esophageal adenocarcinomas (EACs) is underpinned by cancer cell extrinsic mechanisms of the tumor microenvironment (TME). We demonstrate that, by targeting the tumor-promoting functions of the predominant TME cell type, cancer-associated fibroblasts (CAFs) with phosphodiesterase type 5 inhibitors (PDE5i), we can enhance the efficacy of standard-of-care chemotherapy. In ex vivo conditions, PDE5i prevent the transdifferentiation of normal fibroblasts to CAF and abolish the tumor-promoting function of established EAC CAFs. Using shotgun proteomics and single-cell RNA-seq, we reveal PDE5i-specific regulation of pathways related to fibroblast activation and tumor promotion. Finally, we confirm the efficacy of PDE5i in combination with chemotherapy in close-to-patient and in vivo PDX-based model systems. These findings demonstrate that CAFs drive chemotherapy resistance in EACs and can be targeted by repurposing PDE5i, a safe and well-tolerated class of drug administered to millions of patients world-wide to treat erectile dysfunction.


Asunto(s)
Adenocarcinoma , Fibroblastos Asociados al Cáncer , Neoplasias Esofágicas , Adenocarcinoma/tratamiento farmacológico , Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Humanos , Masculino , Inhibidores de Fosfodiesterasa 5/farmacología , Microambiente Tumoral
2.
Cancers (Basel) ; 13(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298611

RESUMEN

Neoadjuvant therapy followed by surgery is the standard of care for locally advanced esophageal adenocarcinoma (EAC). Unfortunately, response to neoadjuvant chemotherapy (NAC) is poor (20-37%), as is the overall survival benefit at five years (9%). The EAC genome is complex and heterogeneous between patients, and it is not yet understood whether specific mutational patterns may result in chemotherapy sensitivity or resistance. To identify associations between genomic events and response to NAC in EAC, a comparative genomic analysis was performed in 65 patients with extensive clinical and pathological annotation using whole-genome sequencing (WGS). We defined response using Mandard Tumor Regression Grade (TRG), with responders classified as TRG1-2 (n = 27) and non-responders classified as TRG4-5 (n =38). We report a higher non-synonymous mutation burden in responders (median 2.08/Mb vs. 1.70/Mb, p = 0.036) and elevated copy number variation in non-responders (282 vs. 136/patient, p < 0.001). We identified copy number variants unique to each group in our cohort, with cell cycle (CDKN2A, CCND1), c-Myc (MYC), RTK/PIK3 (KRAS, EGFR) and gastrointestinal differentiation (GATA6) pathway genes being specifically altered in non-responders. Of note, NAV3 mutations were exclusively present in the non-responder group with a frequency of 22%. Thus, lower mutation burden, higher chromosomal instability and specific copy number alterations are associated with resistance to NAC.

4.
Iran Biomed J ; 23(1): 34-46, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29843204

RESUMEN

Background: Colorectal cancer (CRC) is one of the challenging types of cancers; thus, exploring effective biomarkers related to colorectal could lead to significant progresses toward the treatment of this disease. Methods: In the present study, CRC gene expression datasets have been reanalyzed. Mutual differentially expressed genes across 294 normal mucosa and adjacent tumoral samples were then utilized in order to build two independent transcriptional regulatory networks. By analyzing the networks topologically, genes with differential global connectivity related to cancer state were determined for which the potential transcriptional regulators including transcription factors were identified. Results: The majority of differentially connected genes (DCGs) were up-regulated in colorectal transcriptome experiments. Moreover, a number of these genes have been experimentally validated as cancer or CRC-associated genes. The DCGs, including GART, TGFB1, ITGA2, SLC16A5, SOX9, and MMP7, were investigated across 12 cancer types. Functional enrichment analysis followed by detailed data mining exhibited that these candidate genes could be related to CRC by mediating in metastatic cascade in addition to shared pathways with 12 cancer types by triggering the inflammatory events. Discussion: Our study uncovered correlated alterations in gene expression related to CRC susceptibility and progression that the potent candidate biomarkers could provide a link to disease.


Asunto(s)
Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias Colorrectales/patología , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Genes Relacionados con las Neoplasias , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Estimación de Kaplan-Meier , Reproducibilidad de los Resultados
5.
Gastroenterol Hepatol Bed Bench ; 10(3): 184-193, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29118934

RESUMEN

AIM: The main goal of this analysis was prioritization of co-expressed genes and miRNAs that are thought to have important influences in the pathogenesis of colon and lung cancers. BACKGROUND: MicroRNAs (miRNAs) as small and endogenous noncoding RNAs which regulate gene expression by repressing mRNA translation or decreasing stability of mRNAs; they have proven pivotal roles in different types of cancers. Accumulating evidence indicates the role of miRNAs in a wide range of biological processes from oncogenesis and tumor suppressors to contribution to tumor progression. Colon and lung cancers are frequently encountered challenging types of cancers; therefore, exploring trade-off among underlying biological units such as miRNA with mRNAs will probably lead to identification of promising biomarkers involved in these malignancies. METHODS: Colon cancer and lung cancer expression data were downloaded from Firehose and TCGA databases and varied genes extracted by DCGL software were subjected to build two gene regulatory networks by parmigene R package. Afterwards, a network-driven integrative analysis was performed to explore prognosticates genes, miRNAs and underlying pathways. RESULTS: A total of 192 differentially expressed miRNAs and their target genes within gene regulatory networks were derived by ARACNE algorithm. BTF3, TP53, MYC, CALR, NEM2, miR-29b-3p and miR-145 were identified as bottleneck nodes and enriched via biological gene ontology (GO) terms and pathways chiefly in biosynthesis and signaling pathways by further screening. CONCLUSION: Our study uncovered correlated alterations in gene expression that may relate with colon and lung cancers and highlighted the potent common biomarker candidates for the two diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA