Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Immunol ; 212(8): 1307-1318, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38416036

RESUMEN

Plitidepsin is a host-targeted compound known for inducing a strong anti-SARS-CoV-2 activity, as well as for having the capacity of reducing lung inflammation. Because IL-6 is one of the main cytokines involved in acute respiratory distress syndrome, the effect of plitidepsin in IL-6 secretion in different in vitro and in vivo experimental models was studied. A strong plitidepsin-mediated reduction of IL-6 was found in human monocyte-derived macrophages exposed to nonproductive SARS-CoV-2. In resiquimod (a ligand of TLR7/8)-stimulated THP1 human monocytes, plitidepsin-mediated reductions of IL-6 mRNA and IL-6 levels were also noticed. Additionally, although resiquimod-induced binding to DNA of NF-κB family members was unaffected by plitidepsin, a decrease in the regulated transcription by NF-κB (a key transcription factor involved in the inflammatory cascade) was observed. Furthermore, the phosphorylation of p65 that is required for full transcriptional NF-κB activity was significantly reduced by plitidepsin. Moreover, decreases of IL-6 levels and other proinflammatory cytokines were also seen in either SARS-CoV-2 or H1N1 influenza virus-infected mice, which were treated at low enough plitidepsin doses to not induce antiviral effects. In summary, plitidepsin is a promising therapeutic agent for the treatment of viral infections, not only because of its host-targeted antiviral effect, but also for its immunomodulatory effect, both of which were evidenced in vitro and in vivo by the decrease of proinflammatory cytokines.


Asunto(s)
Depsipéptidos , Subtipo H1N1 del Virus de la Influenza A , FN-kappa B , Humanos , Animales , Ratones , FN-kappa B/metabolismo , Interleucina-6/farmacología , Antivirales/farmacología , Factores Inmunológicos/farmacología , Citocinas/metabolismo , SARS-CoV-2/metabolismo
2.
iScience ; 26(6): 106873, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37250788

RESUMEN

The COVID-19 pandemic posed a global health crisis, with new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants weakening vaccine-driven protection. Trained immunity could help tackle COVID-19 disease. Our objective was to analyze whether heat-killed Mycobacterium manresensis (hkMm), an environmental mycobacterium, induces trained immunity and confers protection against SARS-CoV-2 infection. To this end, THP-1 cells and primary monocytes were trained with hkMm. The increased secretion of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1ß, and IL-10, metabolic activity, and changes in epigenetic marks suggested hkMm-induced trained immunity in vitro. Healthcare workers at risk of SARS-CoV-2 infection were enrolled into the MANRECOVID19 clinical trial (NCT04452773) and were administered Nyaditum resae (NR, containing hkMm) or placebo. No significant differences in monocyte inflammatory responses or the incidence of SARS-CoV-2 infection were found between the groups, although NR modified the profile of circulating immune cell populations. Our results show that M. manresensis induces trained immunity in vitro but not in vivo when orally administered as NR daily for 14 days.

3.
iScience ; 25(11): 105455, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36320330

RESUMEN

Mass vaccination campaigns reduced COVID-19 incidence and severity. Here, we evaluated the immune responses developed in SARS-CoV-2-uninfected patients with predominantly antibody-deficiencies (PAD) after three mRNA-1273 vaccine doses. PAD patients were classified based on their immunodeficiency: unclassified primary antibody-deficiency (unPAD, n = 9), common variable immunodeficiency (CVID, n = 12), combined immunodeficiency (CID, n = 1), and thymoma with immunodeficiency (TID, n = 1). unPAD patients and healthy controls (HCs, n = 10) developed similar vaccine-induced humoral responses after two doses. However, CVID patients showed reduced binding and neutralizing titers compared to HCs. Of interest, these PAD groups showed lower levels of Spike-specific IFN-γ-producing cells. CVID individuals also presented diminished CD8+T cells. CID and TID patients developed cellular but not humoral responses. Although the third vaccine dose boosted humoral responses in most PAD patients, it had limited effect on expanding cellular immunity. Vaccine-induced immune responses in PAD individuals are heterogeneous, and should be immunomonitored to define a personalized therapeutic strategies.

4.
Antiviral Res ; 200: 105270, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35231500

RESUMEN

The pandemic caused by the new coronavirus SARS-CoV-2 has made evident the need for broad-spectrum, efficient antiviral treatments to combat emerging and re-emerging viruses. Plitidepsin is an antitumor agent of marine origin that has also shown a potent pre-clinical efficacy against SARS-CoV-2. Plitidepsin targets the host protein eEF1A (eukaryotic translation elongation factor 1 alpha) and affects viral infection at an early, post-entry step. Because electron microscopy is a valuable tool to study virus-cell interactions and the mechanism of action of antiviral drugs, in this work we have used transmission electron microscopy (TEM) to evaluate the effects of plitidepsin in SARS-CoV-2 infection in cultured Vero E6 cells 24 and 48h post-infection. In the absence of plitidepsin, TEM morphological analysis showed double-membrane vesicles (DMVs), organelles that support coronavirus genome replication, single-membrane vesicles with viral particles, large vacuoles with groups of viruses and numerous extracellular virions attached to the plasma membrane. When treated with plitidepsin, no viral structures were found in SARS-CoV-2-infected Vero E6 cells. Immunogold detection of SARS-CoV-2 nucleocapsid (N) protein and double-stranded RNA (dsRNA) provided clear signals in cells infected in the absence of plitidepsin, but complete absence in cells infected and treated with plitidepsin. The present study shows that plitidepsin blocks the biogenesis of viral replication organelles and the morphogenesis of virus progeny. Electron microscopy morphological analysis coupled to immunogold labeling of SARS-CoV-2 products offers a unique approach to understand how antivirals such as plitidepsin work.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Depsipéptidos , Animales , Antivirales/uso terapéutico , Chlorocebus aethiops , Depsipéptidos/farmacología , Péptidos Cíclicos , SARS-CoV-2 , Células Vero , Replicación Viral
5.
Life Sci Alliance ; 5(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35012962

RESUMEN

Plitidepsin, a marine-derived cyclic-peptide, inhibits SARS-CoV-2 replication at nanomolar concentrations by targeting the host protein eukaryotic translation elongation factor 1A. Here, we show that plitidepsin distributes preferentially to lung over plasma, with similar potency against across several SARS-CoV-2 variants in preclinical studies. Simultaneously, in this randomized, parallel, open-label, proof-of-concept study (NCT04382066) conducted in 10 Spanish hospitals between May and November 2020, 46 adult hospitalized patients with confirmed SARS-CoV-2 infection received either 1.5 mg (n = 15), 2.0 mg (n = 16), or 2.5 mg (n = 15) plitidepsin once daily for 3 d. The primary objective was safety; viral load kinetics, mortality, need for increased respiratory support, and dose selection were secondary end points. One patient withdrew consent before starting procedures; 45 initiated treatment; one withdrew because of hypersensitivity. Two Grade 3 treatment-related adverse events were observed (hypersensitivity and diarrhea). Treatment-related adverse events affecting more than 5% of patients were nausea (42.2%), vomiting (15.6%), and diarrhea (6.7%). Mean viral load reductions from baseline were 1.35, 2.35, 3.25, and 3.85 log10 at days 4, 7, 15, and 31. Nonmechanical invasive ventilation was required in 8 of 44 evaluable patients (16.0%); six patients required intensive care support (13.6%), and three patients (6.7%) died (COVID-19-related). Plitidepsin has a favorable safety profile in patients with COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Depsipéptidos/uso terapéutico , Hospitalización/estadística & datos numéricos , Péptidos Cíclicos/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Adulto , Anciano , COVID-19/virología , Línea Celular Tumoral , Depsipéptidos/efectos adversos , Depsipéptidos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Estimación de Kaplan-Meier , Tiempo de Internación/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Neutropenia/inducido químicamente , Péptidos Cíclicos/efectos adversos , Péptidos Cíclicos/farmacología , SARS-CoV-2/fisiología , Resultado del Tratamiento , Carga Viral/efectos de los fármacos
6.
Life Sci Alliance ; 4(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34321327

RESUMEN

The use of high-dose of intravenous immunoglobulins (IVIGs) as immunomodulators for the treatment of COVID-19-affected individuals has shown promising results. IVIG reduced inflammation in these patients, who progressively restored respiratory function. However, little is known about how they may modulate immune responses in COVID-19 individuals. Here, we have analyzed the levels of 41 inflammatory biomarkers in plasma samples obtained at day 0 (pretreatment initiation), 3, 7, and 14 from five hospitalized COVID-19 patients treated with a 5-d course of 400 mg/kg/d of IVIG. The plasmatic levels of several cytokines (Tumor Necrosis Factor, IL-10, IL-5, and IL-7), chemokines (macrophage inflammatory protein-1α), growth/tissue repairing factors (hepatic growth factor), complement activation (C5a), and intestinal damage such as Fatty acid-binding protein 2 and LPS-binding protein showed a progressive decreasing trend during the next 2 wk after treatment initiation. This trend was not observed in IVIG-untreated COVID-19 patients. Thus, the administration of high-dose IVIG to hospitalized COVID-19 patients may improve their clinical evolution by modulating their hyperinflammatory and immunosuppressive status.


Asunto(s)
COVID-19/terapia , Inmunoglobulinas Intravenosas/uso terapéutico , Administración Intravenosa , Adulto , Anciano , Biomarcadores/sangre , COVID-19/sangre , COVID-19/inmunología , COVID-19/virología , Quimiocinas/sangre , Citocinas/sangre , Femenino , Humanos , Inmunidad/inmunología , Inmunoglobulinas/inmunología , Inmunoglobulinas/uso terapéutico , Inmunoglobulinas Intravenosas/inmunología , Inflamación/sangre , Inflamación/terapia , Inflamación/virología , Masculino , Persona de Mediana Edad , SARS-CoV-2/aislamiento & purificación
7.
Lancet Infect Dis ; 21(10): 1365-1372, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34051886

RESUMEN

BACKGROUND: The banning of mass-gathering indoor events to prevent SARS-CoV-2 spread has had an important effect on local economies. Despite growing evidence on the suitability of antigen-detecting rapid diagnostic tests (Ag-RDT) for mass screening at the event entry, this strategy has not been assessed under controlled conditions. We aimed to assess the effectiveness of a prevention strategy during a live indoor concert. METHODS: We designed a randomised controlled open-label trial to assess the effectiveness of a comprehensive preventive intervention for a mass-gathering indoor event (a live concert) based on systematic same-day screening of attendees with Ag-RDTs, use of facial masks, and adequate air ventilation. The event took place in the Sala Apolo, Barcelona, Spain. Adults aged 18-59 years with a negative result in an Ag-RDT from a nasopharyngeal swab collected immediately before entering the event were randomised 1:1 (block randomisation stratified by age and gender) to either attend the indoor event for 5 hours or go home. Nasopharyngeal specimens used for Ag-RDT screening were analysed by real-time reverse-transcriptase PCR (RT-PCR) and cell culture (Vero E6 cells). 8 days after the event, a nasopharyngeal swab was collected and analysed by Ag-RDT, RT-PCR, and a transcription-mediated amplification test (TMA). The primary outcome was the difference in incidence of RT-PCR-confirmed SARS-CoV-2 infection at 8 days between the control and the intervention groups, assessed in all participants who were randomly assigned, attended the event, and had a valid result for the SARS-CoV-2 test done at follow-up. The trial is registered at ClinicalTrials.gov, NCT04668625. FINDINGS: Participant enrollment took place during the morning of the day of the concert, Dec 12, 2020. Of the 1140 people who responded to the call and were deemed eligible, 1047 were randomly assigned to either enter the music event (experimental group) or continue with normal life (control group). Of the 523 randomly assigned to the experimental group, 465 were included in the analysis of the primary outcome (51 did not enter the event and eight did not take part in the follow-up assessment), and of the 524 randomly assigned to the control group, 495 were included in the final analysis (29 did not take part in the follow-up). At baseline, 15 (3%) of 495 individuals in the control group and 13 (3%) of 465 in the experimental group tested positive on TMA despite a negative Ag-RDT result. The RT-PCR test was positive in one case in each group and cell viral culture was negative in all cases. 8 days after the event, two (<1%) individuals in the control arm had a positive Ag-RDT and PCR result, whereas no Ag-RDT nor RT-PCR positive results were found in the intervention arm. The Bayesian estimate for the incidence between the experimental and control groups was -0·15% (95% CI -0·72 to 0·44). INTERPRETATION: Our study provides preliminary evidence on the safety of indoor mass-gathering events during a COVID-19 outbreak under a comprehensive preventive intervention. The data could help restart cultural activities halted during COVID-19, which might have important sociocultural and economic implications. FUNDING: Primavera Sound Group and the #YoMeCorono Initiative. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section.


Asunto(s)
Prueba Serológica para COVID-19/métodos , COVID-19 , Adolescente , Adulto , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , Tamizaje Masivo , Persona de Mediana Edad , Reproducibilidad de los Resultados , España , Adulto Joven
8.
Front Immunol ; 10: 825, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31114569

RESUMEN

Antigen presenting cells from the cervical mucosa are thought to amplify incoming HIV-1 and spread infection systemically without being productively infected. Yet, the molecular mechanism at the cervical mucosa underlying this viral transmission pathway remains unknown. Here we identified a subset of HLA-DR+ CD14+ CD11c+ cervical DCs at the lamina propria of the ectocervix and the endocervix that expressed the type-I interferon inducible lectin Siglec-1 (CD169), which promoted viral uptake. In the cervical biopsy of a viremic HIV-1+ patient, Siglec-1+ cells harbored HIV-1-containing compartments, demonstrating that in vivo, these cells trap viruses. Ex vivo, a type-I interferon antiviral environment enhanced viral capture and trans-infection via Siglec-1. Nonetheless, HIV-1 transfer via cervical DCs was effectively prevented with antibodies against Siglec-1. Our findings contribute to decipher how cervical DCs may boost HIV-1 replication and promote systemic viral spread from the cervical mucosa, and highlight the importance of including inhibitors against Siglec-1 in microbicidal strategies.


Asunto(s)
Cuello del Útero/inmunología , Células Dendríticas/inmunología , Infecciones por VIH/inmunología , VIH-1/fisiología , Lectina 1 Similar a Ig de Unión al Ácido Siálico/inmunología , Replicación Viral/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Transporte Biológico Activo/inmunología , Cuello del Útero/patología , Cuello del Útero/virología , Células Dendríticas/patología , Células Dendríticas/virología , Femenino , Células HEK293 , Infecciones por VIH/patología , Humanos , Interferón Tipo I/inmunología , Persona de Mediana Edad , Membrana Mucosa/inmunología , Membrana Mucosa/patología , Membrana Mucosa/virología
9.
Sci Rep ; 7: 40800, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-28084464

RESUMEN

The HIV-1 gp41 Membrane Proximal External Region (MPER) is recognized by broadly neutralizing antibodies and represents a promising vaccine target. However, MPER immunogenicity and antibody activity are influenced by membrane lipids. To evaluate lipid modulation of MPER immunogenicity, we generated a 1-Palmitoyl-2-oleoylphosphatidylcholine (POPC)-based proteoliposome collection containing combinations of phosphatidylserine (PS), GM3 ganglioside, cholesterol (CHOL), sphingomyelin (SM) and the TLR4 agonist monophosphoryl lipid A (MPLA). A recombinant gp41-derived miniprotein (gp41-MinTT) exposing the MPER and a tetanus toxoid (TT) peptide that favors MHC-II presentation, was successfully incorporated into lipid mixtures (>85%). Immunization of mice with soluble gp41-MinTT exclusively induced responses against the TT peptide, while POPC proteoliposomes generated potent anti-gp41 IgG responses using lower protein doses. The combined addition of PS and GM3 or CHOL/SM to POPC liposomes greatly increased gp41 immunogenicity, which was further enhanced by the addition of MPLA. Responses generated by all proteoliposomes targeted the N-terminal moiety of MPER overlapping the 2F5 neutralizing epitope. Our data show that lipids impact both, the epitope targeted and the magnitude of the response to membrane-dependent antigens, helping to improve MPER-based lipid carriers. Moreover, the identification of immunodominant epitopes allows for the redesign of immunogens targeting MPER neutralizing determinants.


Asunto(s)
Epítopos/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , Lípidos de la Membrana/metabolismo , Animales , Epítopos/química , Femenino , Proteína gp41 de Envoltorio del VIH/química , Inmunogenicidad Vacunal , Lípidos de la Membrana/química , Ratones , Ratones Endogámicos C57BL , Péptidos/química , Péptidos/inmunología , Toxoide Tetánico/química , Toxoide Tetánico/inmunología
10.
J Biol Chem ; 290(45): 27345-27359, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26370074

RESUMEN

Siglec-1 (sialoadhesin, CD169) is a surface receptor on human cells that mediates trans-enhancement of HIV-1 infection through recognition of sialic acid moieties in virus membrane gangliosides. Here, we demonstrate that mouse Siglec-1, expressed on the surface of primary macrophages in an interferon-α-responsive manner, captures murine leukemia virus (MLV) particles and mediates their transfer to proliferating lymphocytes. The MLV infection of primary B-cells was markedly more efficient than that of primary T-cells. The major structural protein of MLV particles, Gag, frequently co-localized with Siglec-1, and trans-infection, primarily of surface-bound MLV particles, efficiently occurred. To explore the role of sialic acid for MLV trans-infection at a submolecular level, we analyzed the potential of six sialic acid precursor analogs to modulate the sialylated ganglioside-dependent interaction of MLV particles with Siglec-1. Biosynthetically engineered sialic acids were detected in both the glycolipid and glycoprotein fractions of MLV producer cells. MLV released from cells carrying N-acyl-modified sialic acids displayed strikingly different capacities for Siglec-1-mediated capture and trans-infection; N-butanoyl, N-isobutanoyl, N-glycolyl, or N-pentanoyl side chain modifications resulted in up to 92 and 80% reduction of virus particle capture and trans-infection, respectively, whereas N-propanoyl or N-cyclopropylcarbamyl side chains had no effect. In agreement with these functional analyses, molecular modeling indicated reduced binding affinities for non-functional N-acyl modifications. Thus, Siglec-1 is a key receptor for macrophage/lymphocyte trans-infection of surface-bound virions, and the N-acyl side chain of sialic acid is a critical determinant for the Siglec-1/MLV interaction.


Asunto(s)
Virus de la Leucemia Murina de Moloney/patogenicidad , Lectina 1 Similar a Ig de Unión al Ácido Siálico/química , Lectina 1 Similar a Ig de Unión al Ácido Siálico/fisiología , Animales , Sitios de Unión , Línea Celular , Gangliósidos/química , Gangliósidos/metabolismo , Interacciones Huésped-Patógeno/fisiología , Humanos , Interferón-alfa/fisiología , Leucemia Experimental/fisiopatología , Leucemia Experimental/virología , Linfocitos/fisiología , Linfocitos/virología , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Virus de la Leucemia Murina de Moloney/genética , Virus de la Leucemia Murina de Moloney/fisiología , Ácido N-Acetilneuramínico/química , Receptores Virales/química , Receptores Virales/fisiología , Infecciones por Retroviridae/fisiopatología , Infecciones por Retroviridae/virología , Lectina 1 Similar a Ig de Unión al Ácido Siálico/genética , Infecciones Tumorales por Virus/fisiopatología , Infecciones Tumorales por Virus/virología
11.
Mol Biol Cell ; 23(12): 2253-63, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22535526

RESUMEN

Syntenin-1 is a cytosolic adaptor protein involved in several cellular processes requiring polarization. Human immunodeficiency virus type 1 (HIV-1) attachment to target CD4(+) T-cells induces polarization of the viral receptor and coreceptor, CD4/CXCR4, and cellular structures toward the virus contact area, and triggers local actin polymerization and phosphatidylinositol 4,5-bisphosphate (PIP(2)) production, which are needed for successful HIV infection. We show that syntenin-1 is recruited to the plasma membrane during HIV-1 attachment and associates with CD4, the main HIV-1 receptor. Syntenin-1 overexpression inhibits HIV-1 production and HIV-mediated cell fusion, while syntenin depletion specifically increases HIV-1 entry. Down-regulation of syntenin-1 expression reduces F-actin polymerization in response to HIV-1. Moreover, HIV-induced PIP(2) accumulation is increased in syntenin-1-depleted cells. Once the virus has entered the target cell, syntenin-1 polarization toward the viral nucleocapsid is lost, suggesting a spatiotemporal regulatory role of syntenin-1 in actin remodeling, PIP(2) production, and the dynamics of HIV-1 entry.


Asunto(s)
VIH-1/fisiología , Sinteninas/metabolismo , Linfocitos T/virología , Internalización del Virus , Actinas/metabolismo , Antígenos CD4/metabolismo , Fusión Celular , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Células Gigantes , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , VIH-1/metabolismo , Interacciones Huésped-Patógeno , Humanos , Immunoblotting , Inmunoprecipitación , Células Jurkat , Microscopía Confocal , Mutación , Fosfatidilinositol 4,5-Difosfato/metabolismo , Unión Proteica , Interferencia de ARN , Sinteninas/genética , Linfocitos T/metabolismo
12.
PLoS Pathog ; 6(3): e1000740, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20360840

RESUMEN

Exosomes are secreted cellular vesicles that can induce specific CD4(+) T cell responses in vivo when they interact with competent antigen-presenting cells like mature dendritic cells (mDCs). The Trojan exosome hypothesis proposes that retroviruses can take advantage of the cell-encoded intercellular vesicle traffic and exosome exchange pathway, moving between cells in the absence of fusion events in search of adequate target cells. Here, we discuss recent data supporting this hypothesis, which further explains how DCs can capture and internalize retroviruses like HIV-1 in the absence of fusion events, leading to the productive infection of interacting CD4(+) T cells and contributing to viral spread through a mechanism known as trans-infection. We suggest that HIV-1 can exploit an exosome antigen-dissemination pathway intrinsic to mDCs, allowing viral internalization and final trans-infection of CD4(+) T cells. In contrast to previous reports that focus on the ability of immature DCs to capture HIV in the mucosa, this review emphasizes the outstanding role that mature DCs could have promoting trans-infection in the lymph node, underscoring a new potential viral dissemination pathway.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/virología , Exosomas/inmunología , Infecciones por VIH/inmunología , VIH/crecimiento & desarrollo , Presentación de Antígeno/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , VIH/inmunología , Humanos , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/virología
13.
Retrovirology ; 5: 32, 2008 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-18377648

RESUMEN

BACKGROUND: Cell-to-cell HIV transmission requires cellular contacts that may be in part mediated by the integrin leukocyte function antigen (LFA)-1 and its ligands intercellular adhesion molecule (ICAM)-1, -2 and -3. The role of these molecules in free virus infection of CD4 T cells or in transinfection mediated by dendritic cells (DC) has been previously described. Here, we evaluate their role in viral transmission between different HIV producing cells and primary CD4 T cells. RESULTS: The formation of cellular conjugates and subsequent HIV transmission between productively infected MOLT cell lines and primary CD4 T cells was not inhibited by a panel of blocking antibodies against ICAM-1, ICAM-3 and alpha and beta chains of LFA-1. Complete abrogation of HIV transmission and formation of cellular conjugates was only observed when gp120/CD4 interactions were blocked. The dispensable role of LFA-1 in HIV transmission was confirmed using non-lymphoid 293T cells, lacking the expression of adhesion molecules, as HIV producing cells. Moreover, HIV transmission between infected and uninfected primary CD4 T cells was abrogated by inhibitors of gp120 binding to CD4 but was not inhibited by blocking LFA-1 binding to ICAM-1 or ICAM-3. Rather, LFA-1 and ICAM-3 mAbs enhanced HIV transfer. All HIV producing cells (including 293T cells) transferred HIV particles more efficiently to memory than to naive CD4 T cells. CONCLUSION: In contrast to other mechanisms of viral spread, HIV transmission between infected and uninfected T cells efficiently occurs in the absence of adhesion molecules. Thus, gp120/CD4 interactions are the main driving force of the formation of cellular contacts between infected and uninfected CD4 T cells whereby HIV transmission occurs.


Asunto(s)
Antígenos CD4/metabolismo , Linfocitos T CD4-Positivos/virología , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH/crecimiento & desarrollo , Molécula 1 de Adhesión Intercelular/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Células Cultivadas , Humanos , Unión Proteica
14.
J Pharmacol Exp Ther ; 324(2): 558-67, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18042828

RESUMEN

Almost all drugs used in anti-human immunodeficiency virus (HIV)-1 and anticancer therapies require membrane proteins to get into the cell to develop their proper activity. Nevertheless, little is known regarding the expression and activity of specific carriers involved in the uptake of these drugs in immune cells. Here, we assessed the mRNA levels, protein expression profile, and activity of the gene families SLC28 (coding for concentrative nucleoside transporters, hCNT1-3), SLC29 (equilibrative nucleoside transporters, hENT1-2), and SLC22 (organic cation transporters, hOCT1-3 and hOCTN1-2). Both hENTs and hCNT2 were abundant in primary lymphocytes, with a preferential activity of hENT1. A significant up-regulation in hENTs expression (100-fold) and activity (30-fold) was seen under stimulation of primary T lymphocytes. In contrast, monocytes, monocyte-derived macrophages (MDMs), and immature monocyte-derived dendritic cells predominantly expressed hCNT3, a functional transporter in MDMs. Finally, in immune cells, hOCTs showed a more heterogeneous expression profile and a lower activity than human nucleoside transporters (hNTs), although up-regulation of hOCTs also occurred upon lymphocyte activation. Overall, the expression and activity of most of the studied transporters emphasize their relevance in relation to anti-HIV and anticancer therapies. The identification of the transporter involved in each specific drug uptake in immune cells could help to optimize pharmacological therapeutic responses.


Asunto(s)
Fármacos Anti-VIH/metabolismo , Antineoplásicos/metabolismo , VIH , Leucocitos Mononucleares/metabolismo , Proteínas de Transporte de Membrana/biosíntesis , Línea Celular Tumoral , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Humanos , Proteínas de Transporte de Membrana/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA