Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Diabetes Metab ; : 101561, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977261

RESUMEN

AIM: Bariatric surgery is highly effective for the treatment of obesity in individuals without (OB1) and in those with type 2 diabetes (T2D2). However, whether bariatric surgery triggers similar or distinct molecular changes in OB and T2D remains unknown. Given that individuals with type 2 diabetes often exhibit more severe metabolic deterioration, we hypothesized that bariatric surgery induces distinct molecular adaptations in skeletal muscle, the major site of glucose uptake, of OB and T2D after surgery-induced weight loss. METHODS: All participants (OB, n=13; T2D, n=13) underwent detailed anthropometry before and one year after the surgery. Skeletal muscle biopsies were isolated at both time points and subjected to transcriptome and methylome analyses using a comprehensive bioinformatic pipeline. RESULTS: Before surgery, T2D had higher fasting glucose and insulin levels but lower whole-body insulin sensitivity, only glycemia remained higher in T2D than in OB after surgery. Surgery-mediated weight loss affected different subsets of genes with 2,013 differentially expressed in OB and 959 in T2D. In OB differentially expressed genes were involved in insulin, PPAR signaling and oxidative phosphorylation pathways, whereas ribosome and splicesome in T2D. LASSO regression analysis revealed distinct candidate genes correlated with improvement of phenotypic traits in OB and T2D. Compared to OB, DNA methylation was less affected in T2D in response to bariatric surgery. This may be due to increased global hydroxymethylation accompanied by decreased expression of one of the type 2 diabetes risk gene, TET2, encoding a demethylation enzyme in T2D. CONCLUSION: OB and T2D exhibit differential skeletal muscle transcriptome responses to bariatric surgery, presumably resulting from perturbed epigenetic flexibility.

2.
Obesity (Silver Spring) ; 32(2): 363-375, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086776

RESUMEN

OBJECTIVE: The aim of this study was to discover novel markers underlying the improvement of skeletal muscle metabolism after bariatric surgery. METHODS: Skeletal muscle transcriptome data of lean people and people with obesity, before and 1 year after bariatric surgery, were subjected to weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) regression. Results of LASSO were confirmed in a replication cohort. RESULTS: The expression levels of 440 genes differing between individuals with and without obesity were no longer different 1 year after surgery, indicating restoration. WGCNA clustered 116 genes with normalized expression in one major module, particularly correlating to weight loss and decreased plasma free fatty acids (FFA), 44 of which showed an obesity-related phenotype upon deletion in mice. Among the genes of the major module, 105 represented prominent markers for reduced FFA concentration, including 55 marker genes for decreased BMI in both the discovery and replication cohorts. CONCLUSIONS: Previously unknown gene networks and marker genes underlined the important role of FFA in restoring muscle gene expression after bariatric surgery and further suggest novel therapeutic targets for obesity.


Asunto(s)
Cirugía Bariátrica , Transcriptoma , Humanos , Animales , Ratones , Obesidad/genética , Obesidad/cirugía , Obesidad/metabolismo , Músculo Esquelético/metabolismo , Pérdida de Peso/genética , Ácidos Grasos no Esterificados/metabolismo , Redes Reguladoras de Genes
4.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35216219

RESUMEN

Pancreatic steatosis associates with ß-cell failure and may participate in the development of type-2-diabetes. Our previous studies have shown that diabetes-susceptible mice accumulate more adipocytes in the pancreas than diabetes-resistant mice. In addition, we have demonstrated that the co-culture of pancreatic islets and adipocytes affect insulin secretion. The aim of this current study was to elucidate if and to what extent pancreas-resident mesenchymal stromal cells (MSCs) with adipogenic progenitor potential differ from the corresponding stromal-type cells of the inguinal white adipose tissue (iWAT). miRNA (miRNome) and mRNA expression (transcriptome) analyses of MSCs isolated by flow cytometry of both tissues revealed 121 differentially expressed miRNAs and 1227 differentially expressed genes (DEGs). Target prediction analysis estimated 510 DEGs to be regulated by 58 differentially expressed miRNAs. Pathway analyses of DEGs and miRNA target genes showed unique transcriptional and miRNA signatures in pancreas (pMSCs) and iWAT MSCs (iwatMSCs), for instance fibrogenic and adipogenic differentiation, respectively. Accordingly, iwatMSCs revealed a higher adipogenic lineage commitment, whereas pMSCs showed an elevated fibrogenesis. As a low degree of adipogenesis was also observed in pMSCs of diabetes-susceptible mice, we conclude that the development of pancreatic steatosis has to be induced by other factors not related to cell-autonomous transcriptomic changes and miRNA-based signals.


Asunto(s)
Adipogénesis/fisiología , Tejido Adiposo Blanco/fisiología , Diferenciación Celular/fisiología , Células Madre Mesenquimatosas/fisiología , Páncreas/fisiología , Adipocitos/fisiología , Adipogénesis/genética , Animales , Células de la Médula Ósea/fisiología , Diferenciación Celular/genética , Proliferación Celular/genética , Proliferación Celular/fisiología , Perfilación de la Expresión Génica/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Células del Estroma/fisiología , Transcriptoma/genética
5.
J Cachexia Sarcopenia Muscle ; 12(4): 1064-1078, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34196129

RESUMEN

BACKGROUND: Knowledge of age-related DNA methylation changes in skeletal muscle is limited, yet this tissue is severely affected by ageing in humans. METHODS: We conducted a large-scale epigenome-wide association study meta-analysis of age in human skeletal muscle from 10 studies (total n = 908 muscle methylomes from men and women aged 18-89 years old). We explored the genomic context of age-related DNA methylation changes in chromatin states, CpG islands, and transcription factor binding sites and performed gene set enrichment analysis. We then integrated the DNA methylation data with known transcriptomic and proteomic age-related changes in skeletal muscle. Finally, we updated our recently developed muscle epigenetic clock (https://bioconductor.org/packages/release/bioc/html/MEAT.html). RESULTS: We identified 6710 differentially methylated regions at a stringent false discovery rate <0.005, spanning 6367 unique genes, many of which related to skeletal muscle structure and development. We found a strong increase in DNA methylation at Polycomb target genes and bivalent chromatin domains and a concomitant decrease in DNA methylation at enhancers. Most differentially methylated genes were not altered at the mRNA or protein level, but they were nonetheless strongly enriched for genes showing age-related differential mRNA and protein expression. After adding a substantial number of samples from five datasets (+371), the updated version of the muscle clock (MEAT 2.0, total n = 1053 samples) performed similarly to the original version of the muscle clock (median of 4.4 vs. 4.6 years in age prediction error), suggesting that the original version of the muscle clock was very accurate. CONCLUSIONS: We provide here the most comprehensive picture of DNA methylation ageing in human skeletal muscle and reveal widespread alterations of genes involved in skeletal muscle structure, development, and differentiation. We have made our results available as an open-access, user-friendly, web-based tool called MetaMeth (https://sarah-voisin.shinyapps.io/MetaMeth/).


Asunto(s)
Metilación de ADN , Proteómica , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Islas de CpG , Epigénesis Genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético , Adulto Joven
6.
Diabetes ; 69(11): 2503-2517, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32816961

RESUMEN

The identification of individuals with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention. Here, we used a translational approach and prediction criteria to identify changes in DNA methylation visible before the development of T2D. Islets of Langerhans were isolated from genetically identical 10-week-old female New Zealand Obese mice, which differ in their degree of hyperglycemia and in liver fat content. The application of a semiexplorative approach identified 497 differentially expressed and methylated genes (P = 6.42e-09, hypergeometric test) enriched in pathways linked to insulin secretion and extracellular matrix-receptor interaction. The comparison of mouse data with DNA methylation levels of incident T2D cases from the prospective European Prospective Investigation of Cancer (EPIC)-Potsdam cohort, revealed 105 genes with altered DNA methylation at 605 cytosine-phosphate-guanine (CpG) sites, which were associated with future T2D. AKAP13, TENM2, CTDSPL, PTPRN2, and PTPRS showed the strongest predictive potential (area under the receiver operating characteristic curve values 0.62-0.73). Among the new candidates identified in blood cells, 655 CpG sites, located in 99 genes, were differentially methylated in islets of humans with T2D. Using correction for multiple testing detected 236 genes with an altered DNA methylation in blood cells and 201 genes in diabetic islets. Thus, the introduced translational approach identified novel putative biomarkers for early pancreatic islet aberrations preceding T2D.


Asunto(s)
Glucemia , Composición Corporal , Peso Corporal , Epigénesis Genética , Islotes Pancreáticos/metabolismo , Animales , Femenino , Hiperglucemia , Hígado , Ratones , Ratones Obesos , Técnicas de Cultivo de Tejidos , Transcriptoma
7.
J Hepatol ; 73(4): 771-782, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32376415

RESUMEN

BACKGROUND & AIMS: Currently, only a few genetic variants explain the heritability of fatty liver disease. Quantitative trait loci (QTL) analysis of mouse strains has identified the susceptibility locus Ltg/NZO (liver triglycerides from New Zealand obese [NZO] alleles) on chromosome 18 as associating with increased hepatic triglycerides. Herein, we aimed to identify genomic variants responsible for this association. METHODS: Recombinant congenic mice carrying 5.3 Mbp of Ltg/NZO were fed a high-fat diet and characterized for liver fat. Bioinformatic analysis, mRNA profiles and electrophoretic mobility shift assays were performed to identify genes responsible for the Ltg/NZO phenotype. Candidate genes were manipulated in vivo by injecting specific microRNAs into C57BL/6 mice. Pulldown coupled with mass spectrometry-based proteomics and immunoprecipitation were performed to identify interaction partners of IFGGA2. RESULTS: Through positional cloning, we identified 2 immunity-related GTPases (Ifgga2, Ifgga4) that prevent hepatic lipid storage. Expression of both murine genes and the human orthologue IRGM was significantly lower in fatty livers. Accordingly, liver-specific suppression of either Ifgga2 or Ifgga4 led to a 3-4-fold greater increase in hepatic fat content. In the liver of low-fat diet-fed mice, IFGGA2 localized to endosomes/lysosomes, while on a high-fat diet it associated with lipid droplets. Pulldown experiments and proteomics identified the lipase ATGL as a binding partner of IFGGA2 which was confirmed by co-immunoprecipitation. Both proteins partially co-localized with the autophagic marker LC3B. Ifgga2 suppression in hepatocytes reduced the amount of LC3B-II, whereas overexpression of Ifgga2 increased the association of LC3B with lipid droplets and decreased triglyceride storage. CONCLUSION: IFGGA2 interacts with ATGL and protects against hepatic steatosis, most likely by enhancing the binding of LC3B to lipid droplets. LAY SUMMARY: The genetic basis of non-alcoholic fatty liver disease remains incompletely defined. Herein, we identified members of the immunity-related GTPase family in mice and humans that act as regulators of hepatic fat accumulation, with links to autophagy. Overexpression of the gene Ifgga2 was shown to reduce hepatic lipid storage and could be a therapeutic target for the treatment of fatty liver disease.


Asunto(s)
Hígado Graso/genética , Proteínas de Unión al GTP/genética , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Lipasa/genética , Metabolismo de los Lípidos/genética , Proteínas Asociadas a Microtúbulos/genética , Animales , Autofagia , Modelos Animales de Enfermedad , Hígado Graso/metabolismo , Hígado Graso/patología , Femenino , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/biosíntesis , Células Hep G2 , Hepatocitos/patología , Humanos , Lipasa/biosíntesis , Lipasa/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/biosíntesis , Fenotipo , ARN/genética
8.
Nat Commun ; 10(1): 4179, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519890

RESUMEN

The mechanisms underlying improved insulin sensitivity after surgically-induced weight loss are still unclear. We monitored skeletal muscle metabolism in obese individuals before and over 52 weeks after metabolic surgery. Initial weight loss occurs in parallel with a decrease in muscle oxidative capacity and respiratory control ratio. Persistent elevation of intramyocellular lipid intermediates, likely resulting from unrestrained adipose tissue lipolysis, accompanies the lack of rapid changes in insulin sensitivity. Simultaneously, alterations in skeletal muscle expression of genes involved in calcium/lipid metabolism and mitochondrial function associate with subsequent distinct DNA methylation patterns at 52 weeks after surgery. Thus, initial unfavorable metabolic changes including insulin resistance of adipose tissue and skeletal muscle precede epigenetic modifications of genes involved in muscle energy metabolism and the long-term improvement of insulin sensitivity.


Asunto(s)
Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Tejido Adiposo/metabolismo , Adulto , Metilación de ADN/genética , Metilación de ADN/fisiología , Epigénesis Genética/genética , Femenino , Derivación Gástrica , Humanos , Resistencia a la Insulina/genética , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Masculino , Persona de Mediana Edad , Obesidad/genética , Obesidad/metabolismo , Obesidad/cirugía
9.
Cell Rep ; 26(11): 3027-3036.e3, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30865891

RESUMEN

An insufficient adaptive beta-cell compensation is a hallmark of type 2 diabetes (T2D). Primary cilia function as versatile sensory antennae regulating various cellular processes, but their role on compensatory beta-cell replication has not been examined. Here, we identify a significant enrichment of downregulated, cilia-annotated genes in pancreatic islets of diabetes-prone NZO mice as compared with diabetes-resistant B6-ob/ob mice. Among 327 differentially expressed mouse cilia genes, 81 human orthologs are also affected in islets of diabetic donors. Islets of nondiabetic mice and humans show a substantial overlap of upregulated cilia genes that are linked to cell-cycle progression. The shRNA-mediated suppression of KIF3A, essential for ciliogenesis, impairs division of MIN6 beta cells as well as in dispersed primary mouse and human islet cells, as shown by decreased BrdU incorporation. These findings demonstrate the substantial role of cilia-gene regulation on islet function and T2D risk.


Asunto(s)
Cilios/genética , Diabetes Mellitus Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Transcriptoma , Animales , Ciclo Celular/genética , Línea Celular Tumoral , Células Cultivadas , Cilios/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Masculino , Ratones
10.
Genetics ; 210(4): 1527-1542, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30341086

RESUMEN

To identify novel disease genes for type 2 diabetes (T2D) we generated two backcross populations of obese and diabetes-susceptible New Zealand Obese (NZO/HI) mice with the two lean mouse strains 129P2/OlaHsd and C3HeB/FeJ. Subsequent whole-genome linkage scans revealed 30 novel quantitative trait loci (QTL) for T2D-associated traits. The strongest association with blood glucose [12 cM, logarithm of the odds (LOD) 13.3] and plasma insulin (17 cM, LOD 4.8) was detected on proximal chromosome 7 (designated Nbg7p, NZO blood glucose on proximal chromosome 7) exclusively in the NZOxC3H crossbreeding, suggesting that the causal gene is contributed by the C3H genome. Introgression of the critical C3H fragment into the genetic NZO background by generating recombinant congenic strains and metabolic phenotyping validated the phenotype. For the detection of candidate genes in the critical region (30-46 Mb), we used a combined approach of haplotype and gene expression analysis to search for C3H-specific gene variants in the pancreatic islets, which appeared to be the most likely target tissue for the QTL. Two genes, Atp4a and Pop4, fulfilled the criteria from our candidate gene approaches. The knockdown of both genes in MIN6 cells led to decreased glucose-stimulated insulin secretion, indicating a regulatory role of both genes in insulin secretion, thereby possibly contributing to the phenotype linked to Nbg7p In conclusion, our combined- and comparative-cross analysis approach has successfully led to the identification of two novel diabetes susceptibility candidate genes, and thus has been proven to be a valuable tool for the discovery of novel disease genes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Secreción de Insulina/genética , Insulina/genética , Obesidad/genética , Animales , Glucemia/genética , Mapeo Cromosómico , Diabetes Mellitus Tipo 2/patología , Genómica , Genotipo , Glucosa , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , Humanos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos , Obesidad/patología , Sitios de Carácter Cuantitativo/genética , Ribonucleasas/genética , Ribonucleoproteínas/genética
11.
Front Physiol ; 9: 674, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29922174

RESUMEN

Injury to skeletal muscle affects millions of people worldwide. The underlying regenerative process however, is a very complex mechanism, time-wise highly coordinated, and subdivided in an initial inflammatory, a regenerative and a remodeling phase. Muscle regeneration can be impaired by several factors, among them diet-induced obesity (DIO). In order to evaluate if obesity negatively affects healing processes after trauma, we utilized a blunt injury approach to damage the extensor iliotibialis anticus muscle on the left hind limb of obese and normal weight C57BL/6J without showing any significant differences in force input between normal weight and obese mice. Magnetic resonance imaging (MRI) of the injury and regeneration process revealed edema formation and hemorrhage exudate in muscle tissue of normal weight and obese mice. In addition, morphological analysis of physiological changes revealed tissue necrosis, immune cell infiltration, extracellular matrix (ECM) remodeling, and fibrosis formation in the damaged muscle tissue. Regeneration was delayed in muscles of obese mice, with a higher incidence of fibrosis formation due to hampered expression levels of genes involved in ECM organization. Furthermore, a detailed molecular fingerprint in different stages of muscle regeneration underlined a delay or even lack of a regenerative response to injury in obese mice. A time-lapse heatmap determined 81 differentially expressed genes (DEG) with at least three hits in our model at all-time points, suggesting key candidates with a high impact on muscle regeneration. Pathway analysis of the DEG revealed five pathways with a high confidence level: myeloid leukocyte migration, regulation of tumor necrosis factor production, CD4-positive, alpha-beta T cell differentiation, ECM organization, and toll-like receptor (TLR) signaling. Moreover, changes in complement-, Wnt-, and satellite cell-related genes were found to be impaired in obese animals after trauma. Furthermore, histological satellite cell evaluation showed lower satellite cell numbers in the obese model upon injury. Ankrd1, C3ar1, Ccl8, Mpeg1, and Myog expression levels were also verified by qPCR. In summary, increased fibrosis formation, the reduction of Pax7+ satellite cells as well as specific changes in gene expression and signaling pathways could explain the delay of tissue regeneration in obese mice post trauma.

12.
Diabetes ; 66(1): 25-35, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27999105

RESUMEN

Hepatic DPP4 expression is elevated in subjects with ectopic fat accumulation in the liver. However, whether increased dipeptidyl peptidase 4 (DPP4) is involved in the pathogenesis or is rather a consequence of metabolic disease is not known. We therefore studied the transcriptional regulation of hepatic Dpp4 in young mice prone to diet-induced obesity. Already at 6 weeks of age, expression of hepatic Dpp4 was increased in mice with high weight gain, independent of liver fat content. In the same animals, methylation of four intronic CpG sites was decreased, amplifying glucose-induced transcription of hepatic Dpp4 In older mice, hepatic triglyceride content was increased only in animals with elevated Dpp4 expression. Expression and release of DPP4 were markedly higher in the liver compared with adipose depots. Analysis of human liver biopsy specimens revealed a correlation of DPP4 expression and DNA methylation to stages of hepatosteatosis and nonalcoholic steatohepatitis. In summary, our results indicate a crucial role of the liver in participation to systemic DPP4 levels. Furthermore, the data show that glucose-induced expression of Dpp4 in the liver is facilitated by demethylation of the Dpp4 gene early in life. This might contribute to early deteriorations in hepatic function, which in turn result in metabolic disease such as hepatosteatosis later in life.


Asunto(s)
Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Hígado Graso/metabolismo , Hígado/metabolismo , Animales , Western Blotting , Línea Celular , Células Cultivadas , Islas de CpG/genética , Metilación de ADN/genética , Metilación de ADN/fisiología , Regulación de la Expresión Génica , Glucosa/metabolismo , Hepatocitos/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos/metabolismo
13.
PLoS Genet ; 11(9): e1005506, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26348837

RESUMEN

Beta-cell apoptosis and failure to induce beta-cell regeneration are hallmarks of type 2-like diabetes in mouse models. Here we show that islets from obese, diabetes-susceptible New Zealand Obese (NZO) mice, in contrast to diabetes-resistant C57BL/6J (B6)-ob/ob mice, do not proliferate in response to an in-vivo glucose challenge but lose their beta-cells. Genome-wide RNAseq based transcriptomics indicated an induction of 22 cell cycle-associated genes in B6-ob/ob islets that did not respond in NZO islets. Of all genes differentially expressed in islets of the two strains, seven mapped to the diabesity QTL Nob3, and were hypomorphic in either NZO (Lefty1, Apoa2, Pcp4l1, Mndal, Slamf7, Pydc3) or B6 (Ifi202b). Adenoviral overexpression of Lefty1, Apoa2, and Pcp4l1 in primary islet cells increased proliferation, whereas overexpression of Ifi202b suppressed it. We conclude that the identified genes in synergy with obesity and insulin resistance participate in adaptive islet hyperplasia and prevention from severe diabetes in B6-ob/ob mice.


Asunto(s)
Proliferación Celular/genética , Diabetes Mellitus Experimental/genética , Islotes Pancreáticos/citología , Animales , Humanos , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Factores de Determinación Derecha-Izquierda/genética , Ratones , Ratones Endogámicos C57BL , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA