Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Neurobiol ; 61(2): 725-752, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37658249

RESUMEN

Widespread alterations in the expression of various genes could contribute to the pathogenesis of epilepsy. The expression levels of various genes, including major inhibitory and excitatory receptors, ion channels, cell type-specific markers, and excitatory amino acid transporters, were assessed and compared between the human epileptic hippocampus and amygdala, and findings from autopsy controls. Moreover, the potential correlation between molecular alterations in epileptic brain tissues and the clinical characteristics of patients undergoing epilepsy surgery was evaluated. Our findings revealed significant and complex changes in the expression of several key regulatory genes in both the hippocampus and amygdala of patients with intractable epilepsy. The expression changes in various genes differed considerably between the epileptic hippocampus and amygdala. Different correlation patterns were observed between changes in gene expression and clinical characteristics, depending on whether the patients were considered as a whole or were subdivided. Altered molecular signatures in different groups of epileptic patients, defined within a given category, could be viewed as diagnostic biomarkers. Distinct patterns of molecular changes that distinguish these groups from each other appear to be associated with epilepsy-specific functional consequences.


Asunto(s)
Epilepsia , Humanos , Epilepsia/metabolismo , Hipocampo/metabolismo , Canales Iónicos/metabolismo , Amígdala del Cerebelo/metabolismo
2.
Front Neurosci ; 17: 1309172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38156267

RESUMEN

Spinal cord injury (SCI) is a critical neurological condition that may impair motor, sensory, and autonomous functions. At the cellular level, inflammation, impairment of axonal regeneration, and neuronal death are responsible for SCI-related complications. Regarding the high mortality and morbidity rates associated with SCI, there is a need for effective treatment. Despite advances in SCI repair, an optimal treatment for complete recovery after SCI has not been found so far. Therefore, an effective strategy is needed to promote neuronal regeneration and repair after SCI. In recent years, regenerative treatments have become a potential option for achieving improved functional recovery after SCI by promoting the growth of new neurons, protecting surviving neurons, and preventing additional damage to the spinal cord. Transplantation of cells and cells-derived extracellular vesicles (EVs) can be effective for SCI recovery. However, there are some limitations and challenges related to cell-based strategies. Ethical concerns and limited efficacy due to the low survival rate, immune rejection, and tumor formation are limitations of cell-based therapies. Using EVs is a helpful strategy to overcome these limitations. It should be considered that short half-life, poor accumulation, rapid clearance, and difficulty in targeting specific tissues are limitations of EVs-based therapies. Hydrogel-encapsulated exosomes have overcome these limitations by enhancing the efficacy of exosomes through maintaining their bioactivity, protecting EVs from rapid clearance, and facilitating the sustained release of EVs at the target site. These hydrogel-encapsulated EVs can promote neuroregeneration through improving functional recovery, reducing inflammation, and enhancing neuronal regeneration after SCI. This review aims to provide an overview of the current research status, challenges, and future clinical opportunities of hydrogel-encapsulated EVs in the treatment of SCI.

3.
Neurobiol Dis ; 124: 416-427, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30590180

RESUMEN

Neuropathological findings in the amygdala obtained from patients with mesial temporal lobe epilepsy (MTLE) indicate varying degrees of histopathological alterations, such as neuronal loss and gliosis. The mechanisms underlying cellular damage in the amygdala of patients with MTLE have not been fully elucidated. In the present study, we assess cellular damage, determine the receptor expression of major inhibitory and excitatory neurotransmitters, and evaluate the correlation between the expression of various receptors and cell damage in the basolateral complex and the centromedial areas in the amygdala specimens resected during brain surgery on 30 patients with medically intractable MTLE. Our data reveal an increased rate of cell damage and apoptosis as well as decreased expression levels of several GABAergic receptor subunits (GABAARα1, GABAARß3, and GABABR1) and GAD65 in the amygdalae obtained during epilepsy surgery compared to autopsy specimens. Analyses of the expression of glutamate excitatory receptor subunits (NR1, NR2B, mGluR1α, GluR1, and GluR2) reveal no significant differences between the epileptic amygdalae and autopsy control tissues. Furthermore, the increased occurrence of apoptotic cells in the amygdala is negatively correlated with the reduced expression of the studied GABAergic receptor subunits and GAD65 but is not correlated with the expression of excitatory receptors. The present data point to the importance of GABAergic neurotransmission in seizure-induced cell injury in the amygdala of patients with MTLE and suggest several GABA receptor subunits as potential druggable target structures to control epilepsy and its comorbid disorders, such as anxiety.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Receptores de GABA/biosíntesis , Adolescente , Adulto , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/patología , Apoptosis/fisiología , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Transmisión Sináptica/fisiología , Adulto Joven
4.
Iran J Basic Med Sci ; 21(11): 1155-1160, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30483389

RESUMEN

OBJECTIVES: Among several cell sources, adult human neural stem/progenitor cells (hNS/PCs) have been considered outstanding cells for performing mechanistic studies in in vitro and in vivo models of neurological disorders as well as for potential utility in cell-based therapeutic approaches. Previous studies addressed the isolation and culture of hNS/PCs from human neocortical and hippocampal tissues. However, little data are available on hNS/PCs obtained from the adult human amygdala. MATERIALS AND METHODS: The present study explored the capacity of the amygdala harvested from resected brain tissues of patients with medically refractory epilepsy to generate neurosphere-like bodies and motor neuron-like cells. RESULTS: Although the proliferation process was slow, a considerable amount of cells was obtained after the 3rd passage. In addition, the cells could generate motor neuron-like cells under appropriate culture conditions. CONCLUSION: Isolation and culture of these cells enable us to improve our knowledge of the role of the amygdala in some neurological and psychological disorders and provide a novel source for therapeutic cell transplantation.

5.
Nutr Neurosci ; 20(2): 127-134, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25138625

RESUMEN

OBJECTIVES: The potential use of garlic for prevention and treatment of different types of headaches has been suggested by several medieval literatures. Cortical spreading depression (CSD), a propagating wave of neuroglial depolarization, was established as a target for anti-migraine drugs. This study was designed to investigate the effect of garlic extract on CSD in adult rats. METHODS: CSD was induced by KCl microinjection in the somatosensory cortex. The effects of five different concentrations of garlic oil (1-500 µl/l) were tested on different characteristic features of CSD in necocortical slices. In in vivo experiments, the effects of garlic oil on electrophysiological and morphological changes induced by CSD were investigated. RESULTS: Garlic oil in a dose-dependent manner decreased the amplitude of CSD but not its duration and velocity in neocortical brain slices. Garlic oil at concentration of 500 µl/l reversibly reduced the amplitude of the field excitatory post-synaptic potentials and inhibited induction of long-term potentiation in the third layer of neocortical slices. In in vivo studies, systemic application of garlic oil (1 ml/l) for three consecutive days reduced the amplitude and repetition rate of CSD. Garlic oil also prevented of CSD-induced reactive astrocytosis in the neocortex. DISCUSSION: Garlic oil suppresses CSD, likely via inhibition of synaptic plasticity, and prevents its harmful effects on astrocyte. Further studies are required to identify the exact active ingredient(s) of garlic oil that inhibit CSD and may have the potential to use in treatment of CSD-related disorders.


Asunto(s)
Compuestos Alílicos/farmacología , Depresión de Propagación Cortical/efectos de los fármacos , Ajo/química , Neocórtex/efectos de los fármacos , Neuronas/efectos de los fármacos , Extractos Vegetales/farmacología , Corteza Somatosensorial/efectos de los fármacos , Sulfuros/farmacología , Compuestos Alílicos/administración & dosificación , Analgésicos no Narcóticos/administración & dosificación , Analgésicos no Narcóticos/farmacología , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/patología , Astrocitos/fisiología , Tamaño de la Célula/efectos de los fármacos , Etnofarmacología , Gliosis/patología , Gliosis/prevención & control , Técnicas In Vitro , Inyecciones Intraperitoneales , Medicina Tradicional , Neocórtex/citología , Neocórtex/patología , Neocórtex/fisiología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/citología , Neuronas/patología , Neuronas/fisiología , Concentración Osmolar , Extractos Vegetales/administración & dosificación , Raíces de Plantas/química , Ratas , Corteza Somatosensorial/citología , Corteza Somatosensorial/patología , Corteza Somatosensorial/fisiología , Sulfuros/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA