Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Cell Rep ; 43(10): 246, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39343835

RESUMEN

KEY MESSAGE: The barley mutant xan-h.chli-1 shows phenotypic features, such as reduced leaf chlorophyll content and daily transpiration rate, typical of wild barley accessions and landraces adapted to arid climatic conditions. The pale green trait, i.e. reduced chlorophyll content, has been shown to increase the efficiency of photosynthesis and biomass accumulation when photosynthetic microorganisms and tobacco plants are cultivated at high densities. Here, we assess the effects of reducing leaf chlorophyll content in barley by altering the chlorophyll biosynthesis pathway (CBP). To this end, we have isolated and characterised the pale green barley mutant xan-h.chli-1, which carries a missense mutation in the Xan-h gene for subunit I of Mg-chelatase (HvCHLI), the first enzyme in the CBP. Intriguingly, xan-h.chli-1 is the only known viable homozygous mutant at the Xan-h locus in barley. The Arg298Lys amino-acid substitution in the ATP-binding cleft causes a slight decrease in HvCHLI protein abundance and a marked reduction in Mg-chelatase activity. Under controlled growth conditions, mutant plants display reduced accumulation of antenna and photosystem core subunits, together with reduced photosystem II yield relative to wild-type under moderate illumination, and consistently higher than wild-type levels at high light intensities. Moreover, the reduced content of leaf chlorophyll is associated with a stable reduction in daily transpiration rate, and slight decreases in total biomass accumulation and water-use efficiency, reminiscent of phenotypic features of wild barley accessions and landraces that thrive under arid climatic conditions.


Asunto(s)
Clorofila , Hordeum , Liasas , Mutación Missense , Hojas de la Planta , Proteínas de Plantas , Transpiración de Plantas , Hordeum/genética , Hordeum/fisiología , Hordeum/enzimología , Clorofila/metabolismo , Transpiración de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Liasas/genética , Liasas/metabolismo , Fotosíntesis/genética , Fenotipo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética
2.
Redox Biol ; 69: 103015, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38183796

RESUMEN

Redox status of protein cysteinyl residues is mediated via glutathione (GSH)/glutaredoxin (GRX) and thioredoxin (TRX)-dependent redox cascades. An oxidative challenge can induce post-translational protein modifications on thiols, such as protein S-glutathionylation. Class I GRX are small thiol-disulfide oxidoreductases that reversibly catalyse S-glutathionylation and protein disulfide formation. TRX and GSH/GRX redox systems can provide partial backup for each other in several subcellular compartments, but not in the plastid stroma where TRX/light-dependent redox regulation of primary metabolism takes place. While the stromal TRX system has been studied at detail, the role of class I GRX on plastid redox processes is still unknown. We generate knockout lines of GRXC5 as the only chloroplast class I GRX of the moss Physcomitrium patens. While we find that PpGRXC5 has high activities in GSH-dependent oxidoreductase assays using hydroxyethyl disulfide or redox-sensitive GFP2 as substrates in vitro, Δgrxc5 plants show no detectable growth defect or stress sensitivity, in contrast to mutants with a less negative stromal EGSH (Δgr1). Using stroma-targeted roGFP2, we show increased protein Cys steady state oxidation and decreased reduction rates after oxidative challenge in Δgrxc5 plants in vivo, indicating kinetic uncoupling of the protein Cys redox state from EGSH. Compared to wildtype, protein Cys disulfide formation rates and S-glutathionylation levels after H2O2 treatment remained unchanged. Lack of class I GRX function in the stroma did not result in impaired carbon fixation. Our observations suggest specific roles for GRXC5 in the efficient transfer of electrons from GSH to target protein Cys as well as negligible cross-talk with metabolic regulation via the TRX system. We propose a model for stromal class I GRX function in efficient catalysis of protein dithiol/disulfide equilibria upon redox steady state alterations affecting stromal EGSH and highlight the importance of identifying in vivo target proteins of GRXC5.


Asunto(s)
Glutarredoxinas , Peróxido de Hidrógeno , Peróxido de Hidrógeno/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Oxidación-Reducción , Glutatión/metabolismo , Estrés Oxidativo , Cloroplastos/metabolismo , Disulfuros/química
3.
Physiol Plant ; 175(5): e13998, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882279

RESUMEN

Proper short- and long-term acclimation to different growth light intensities is essential for the survival and competitiveness of plants in the field. High light exposure is known to induce the down-regulation and photoinhibition of photosystem II (PSII) activity to reduce photo-oxidative stress. The xanthophyll zeaxanthin (Zx) serves central photoprotective functions in these processes. We have shown in recent work with different plant species (Arabidopsis, tobacco, spinach and pea) that photoinhibition of PSII and degradation of the PSII reaction center protein D1 is accompanied by the inactivation and degradation of zeaxanthin epoxidase (ZEP), which catalyzes the reconversion of Zx to violaxanthin. Different high light sensitivity of the above-mentioned species correlated with differential down-regulation of both PSII and ZEP activity. Applying light and electron microscopy, chlorophyll fluorescence, and protein and pigment analyses, we investigated the acclimation properties of these species to different growth light intensities with respect to the ability to adjust their photoprotective strategies. We show that the species differ in phenotypic plasticity in response to short- and long-term high light conditions at different morphological and physiological levels. However, the close co-regulation of PSII and ZEP activity remains a common feature in all species and under all conditions. This work supports species-specific acclimation strategies and properties in response to high light stress and underlines the central role of the xanthophyll Zx in photoprotection.


Asunto(s)
Arabidopsis , Luz , Oxidorreductasas/metabolismo , Xantófilas/metabolismo , Zeaxantinas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Luteína/metabolismo , Arabidopsis/metabolismo , Aclimatación , Clorofila/metabolismo , Fotosíntesis
4.
Plant Cell Physiol ; 64(10): 1220-1230, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37556318

RESUMEN

The generation of violaxanthin (Vx) de-epoxidase (VDE), photosystem II subunit S (PsbS) and zeaxanthin (Zx) epoxidase (ZEP) (VPZ) lines, which simultaneously overexpress VDE, PsbS and ZEP, has been successfully used to accelerate the kinetics of the induction and relaxation of non-photochemical quenching (NPQ). Here, we studied the impact of the overexpression of VDE and ZEP on the conversion of the xanthophyll cycle pigments in VPZ lines of Arabidopsis thaliana and Nicotiana tabacum. The protein amount of both VDE and ZEP was determined to be increased to about 3- to 5-fold levels of wild-type (WT) plants for both species. Compared to WT plants, the conversion of Vx to Zx, and hence VDE activity, was only marginally accelerated in VPZ lines, whereas the conversion of Zx to Vx, and thus ZEP activity, was strongly increased in VPZ lines. This indicates that the amount of ZEP but not the amount of VDE is a critical determinant of the equilibrium of the de-epoxidation state of xanthophyll cycle pigments under saturating light conditions. Comparing the two steps of epoxidation, particularly the second step (antheraxanthin to Vx) was found to be accelerated in VPZ lines, implying that the intermediate Ax is released into the membrane during epoxidation by ZEP.


Asunto(s)
Arabidopsis , Zeaxantinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Xantófilas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Luz
5.
Plant Direct ; 3(11): e00185, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31819921

RESUMEN

The xanthophyll zeaxanthin is synthesized in chloroplasts upon high light exposure of plants and serves central photoprotective functions. The reconversion of zeaxanthin to violaxanthin is catalyzed by the zeaxanthin epoxidase (ZEP). ZEP shows highest activity after short and moderate high light periods, but becomes gradually down-regulated in response to increasing high light stress along with down-regulation of photosystem II (PSII) activity. ZEP activity and ZEP protein levels were studied in response to high light stress in four plant species: Arabidopsis thaliana, Pisum sativum, Nicotiana benthamiana and Spinacia oleracea. In all species, ZEP protein was degraded during photoinhibition of PSII in parallel with the D1 protein of PSII. In the presence of streptomycin, an inhibitor of chloroplast protein synthesis, photoinhibition of PSII and ZEP activity as well as degradation of D1 and ZEP protein was strongly increased, indicating a close correlation of ZEP regulation with PSII photoinhibition and repair. The concomitant high light-induced inactivation/degradation of ZEP and D1 prevents the reconversion of zeaxanthin during photoinhibition and repair of PSII. This regulation of ZEP activity supports a coordinated degradation of D1 and ZEP during photoinhibition/repair of PSII and an essential photoprotective function of zeaxanthin during the PSII repair cycle.

6.
New Phytol ; 201(2): 452-465, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24117441

RESUMEN

The Abc1 protein kinases are a large family of functionally diverse proteins with multiple roles in the regulation of respiration and oxidative stress tolerance. A functional characterization was carried out for AtSIA1, an Arabidopsis thaliana Abc1-like protein, focusing on its potential redundancy with its homolog AtOSA1. Both proteins are located within chloroplasts, even if a different subplastidial localization seems probable. The comparison of atsia1 and atosa1 mutants, atsia1/atosa1 double mutant and wild-type plants revealed a reduction in plastidial iron-containing proteins of the Cytb6 f complex in the mutants. Iron uptake from soil is not hampered in mutant lines, suggesting that AtSIA1 and AtOSA1 affect iron distribution within the chloroplast. Mutants accumulated more ferritin and superoxide, and showed reduced tolerance to reactive oxygen species (ROS), potentially indicating a basal role in oxidative stress. The mutants produced higher concentrations of plastochromanol and plastoquinones than wild-type plants, but only atsia1 plants developed larger plastoglobules and contained higher concentrations of α- and γ-tocopherol and VTE1. Taken together, these data suggest that AtSIA1 and AtOSA1 probably act in signaling pathways that influence responses to ROS production and oxidative stress.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Hierro/metabolismo , Estrés Oxidativo , Estrés Fisiológico , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutación , Fotosíntesis , Filogenia , Análisis de Secuencia de Proteína
7.
Plant J ; 50(2): 293-304, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17355434

RESUMEN

When grown in short day conditions and at low light, leaves of Arabidopsis plants with mutations in the genes encoding two plastidial ATP/ADP transporters (so-called null mutants) spontaneously develop necrotic lesions. Under these conditions, the mutants also display light-induced accumulation of H(2)O(2) and constitutive expression of genes for copper/zinc superoxide dismutase 2 and ascorbate peroxidase 1. In the light phase, null mutants accumulate high levels of phototoxic protoporphyrin IX but have only slightly reduced levels of Mg protoporphyrin IX. The physiological changes are associated with reduced magnesium-chelatase activity. Since the expression of genes encoding any of the three subunits of magnesium-chelatase is similar in wild type and null mutants, decreased enzyme activity is probably due to post-translational modification which might be due to limited availability of ATP in plastids during the night. Surprisingly, the formation of necrotic lesions was absent when null mutants were grown either in long days and low light intensity or in short days and high light intensity. We ascribe the lack of lesion phenotype to increased nocturnal ATP supply due to glycolytic degradation of starch which may lead to additional substrate-level phosphorylation in the stroma. Thus, nocturnal import of ATP into chloroplasts represents a crucial, previously unknown process that is required for controlled chlorophyll biosynthesis and for preventing photooxidative damage.


Asunto(s)
Adenosina Trifosfato/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Luz , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidasas , Transporte Biológico/efectos de la radiación , Ritmo Circadiano , Eliminación de Gen , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Glucólisis/efectos de la radiación , Peróxido de Hidrógeno/metabolismo , Liasas/genética , Liasas/metabolismo , Mutación , Estrés Oxidativo , Peroxidasas/genética , Peroxidasas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Protoporfirinas/genética , Protoporfirinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Almidón/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Factores de Tiempo
8.
J Plant Physiol ; 164(10): 1311-22, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17074417

RESUMEN

Seedlings of two late-successional tropical rainforest tree species, Tetragastris panamensis (Engler) O. Kuntze and Calophyllum longifolium (Willd.), were field grown for 3-4 months at an open site near Panama City (9 degrees N), Panama, under plastic films that either transmitted or excluded most solar UV-B radiation. Experiments were designed to test whether leaves developing under bright sunlight with strongly reduced UV-B are capable of acclimating to near-ambient UV-B conditions. Leaves of T. panamensis that developed under near-ambient UV-B contained higher amounts of UV-absorbing substances than leaves of seedlings grown under reduced UV-B. Photosynthetic pigment composition, content of alpha-tocopherol, CO(2) assimilation, potential photosystem II (PSII) efficiency (evaluated by F(v)/F(m) ratios) and growth of T. panamensis and C. longifolium did not differ between seedlings developed under near-ambient and reduced solar UV-B. When seedlings were transferred from the reduced UV-B treatment to the near-ambient UV-B treatment, a pronounced inhibition of photosynthetic capacity was observed initially in both species. UV-B-mediated inhibition of photosynthetic capacity nearly fully recovered within 1 week of the transfer in C. longifolium, whereas in T. panamensis an about 35% reduced capacity of CO(2) uptake was maintained. A marked increase in UV-absorbing substances was observed in foliage of transferred T. panamensis seedlings. Both species exhibited enhanced mid-day photoinhibition of PSII immediately after being transferred from the reduced UV-B to the near-ambient UV-B treatment. This effect was fully reversible within 1d in T. panamensis and within a few days in C. longifolium. The data show that leaves of these tropical tree seedlings, when developing in full-spectrum sunlight, are effectively protected against high solar UV-B radiation. In contrast, leaves developing under conditions of low UV-B lacked sufficient UV protection. They experienced a decline in photosynthetic competence when suddenly exposed to near-ambient UV-B levels, but exhibited pronounced acclimative responses.


Asunto(s)
Burseraceae/efectos de la radiación , Clusiaceae/efectos de la radiación , Fotosíntesis/efectos de la radiación , Plantones/efectos de la radiación , Árboles/efectos de la radiación , Rayos Ultravioleta , Biomasa , Burseraceae/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , Clusiaceae/crecimiento & desarrollo , Luz , Complejo de Proteína del Fotosistema II , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de la radiación , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de la radiación , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/efectos de la radiación , Plantones/crecimiento & desarrollo , Factores de Tiempo , Árboles/crecimiento & desarrollo
9.
Plant J ; 37(6): 839-52, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14996217

RESUMEN

In Arabidopsis thaliana, the D-subunit of photosystem I (PSI-D) is encoded by two functional genes, PsaD1 and PsaD2, which are highly homologous. Knock-out alleles for each of the loci have been identified by a combination of forward and reverse genetics. The double mutant psad1-1 psad2-1 is seedling-lethal, high-chlorophyll-fluorescent and deficient for all tested PSI subunits, indicating that PSI-D is essential for photosynthesis. In addition, psad1-1 psad2-1 plants show a defect in the accumulation of thylakoid multiprotein complexes other than PSI. Of the single-gene mutations, psad2 plants behave like wild-type (WT) plants, whereas psad1-1 markedly affects the accumulation of PsaD mRNA and protein, and photosynthetic electron flow. Additional effects of the psad1-1 mutation include a decrease in growth rate under greenhouse conditions and downregulation of the mRNA expression of most genes involved in the light phase of photosynthesis. In the same mutant, a marked decrease in the levels of PSI and PSII polypeptides is evident, as well as a light-green leaf coloration and increased photosensitivity. Increased dosage of PsaD2 in the psad1-1 background restores the WT phenotype, indicating that PSI-D1 and PSI-D2 have redundant functions.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas , Complejo de Proteína del Fotosistema I/genética , Proteínas de Plantas/genética , Alelos , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Secuencia de Bases , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , ADN de Plantas/genética , Transporte de Electrón , Dosificación de Gen , Expresión Génica , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutación , Fenotipo , Fotosíntesis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Homología de Secuencia de Aminoácido
10.
Planta ; 215(6): 940-8, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12355154

RESUMEN

During photosynthetic state transitions, a fraction of the major light-harvesting complex (LHCII) shuttles between photosystems II (PSII) and I (PSI), depending on whether or not it is phosphorylated. Its phosphorylation state in turn depends on the relative activity of the two photosystems, which is a function of redox state and illumination parameters. In the psae1-1 mutant of Arabidopsis thaliana (L.) Heynh., amounts of the PSI subunits E, C, D, H and L are decreased. A fraction of LHCII is stably associated with PSI when plants are exposed to low light conditions, giving rise to a high-molecular-mass protein-pigment complex detectable in native protein gels. The formation of this abnormal LHCII-PSI complex is associated with an almost complete suppression of state transitions, a drastic increase in the levels of phosphorylated LHCII under all light regimes tested, and a permanent reduction in PSII antenna size. All these observations suggest that the altered polypeptide composition of PSI perturbs the docking of phosphorylated LHCII, making psae1-1 a unique mutant for the study of PSI-LHCII interactions and additional effects of the mutation, such as a decrease in grana stacking and increased adenylate kinase activity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/fisiología , Fotosíntesis/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema I , Arabidopsis/genética , Clorofila/metabolismo , Transporte de Electrón/fisiología , Luz , Complejos de Proteína Captadores de Luz , Mutación , Fosforilación , Fotosíntesis/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Tilacoides/metabolismo , Tilacoides/ultraestructura
11.
Plant J ; 31(5): 589-99, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12207649

RESUMEN

The mutants irt1-1 and irt1-2 of Arabidopsis thaliana were identified among a collection of T-DNA-tagged lines on the basis of a decrease in the effective quantum yield of photosystem II. The mutations responsible interfere with expression of IRT1, a nuclear gene that encodes the metal ion transporter IRT1. In irt1 mutants, photosensitivity and chlorophyll fluorescence parameters, as well as abundance and composition of the photosynthetic apparatus, are significantly altered. Additional effects of the mutation under greenhouse conditions, including chlorosis and a drastic reduction in growth rate and fertility, are compatible with a deficiency in iron transport. Propagation of irt1 plants on media supplemented with additional quantities of iron salts restores almost all aspects of wild-type behaviour. The irt2-1 mutant, which carries an En insertion in the highly homologous IRT2 gene of Arabidopsis thaliana, was identified by reverse genetics and shows no symptoms of iron deficiency. This, together with the finding that irt1-1 can be complemented by 35S::IRT1 but not by 35S::IRT2, demonstrates that, although the products of the two genes are closely related, only AtIRT1 is required for iron homeostasis under physiological conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Transporte de Catión/metabolismo , Hierro/metabolismo , Fotosíntesis/fisiología , Proteínas de Plantas , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión/genética , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica de las Plantas , Homeostasis , Transporte Iónico/fisiología , Complejos de Proteína Captadores de Luz , Mutagénesis Insercional , Mutación , Fenotipo , Fotosíntesis/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema II , Pigmentos Biológicos/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología
12.
Plant Physiol ; 129(2): 616-24, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12068106

RESUMEN

Photosystem I (PSI) of higher plants contains 18 subunits. Using Arabidopsis En insertion lines, we have isolated knockout alleles of the genes psaG, psaH2, and psaK, which code for PSI-G, -H, and -K. In the mutants psak-1 and psag-1.4, complete loss of PSI-K and -G, respectively, was confirmed, whereas the residual H level in psah2-1.4 is due to a second gene encoding PSI-H, psaH1. Double mutants, lacking PSI-G, and also -K, or a fraction of -H, together with the three single mutants were characterized for their growth phenotypes and PSI polypeptide composition. In general, the loss of each subunit has secondary, in some cases additive, effects on the abundance of other PSI polypeptides, such as D, E, H, L, N, and the light-harvesting complex I proteins Lhca2 and 3. In the G-less mutant psag-1.4, the variation in PSI composition suggests that PSI-G stabilizes the PSI-core. Levels of light-harvesting complex I proteins in plants, which lack simultaneously PSI-G and -K, indicate that PSI subunits other than G and K can also bind Lhca2 and 3. In the same single and double mutants, psag-1.4, psak-1, psah2-1.4, psag-1.4/psah2-1.4, and psag-1.4/psak-1 photosynthetic electron flow and excitation energy quenching were analyzed to address the roles of the various subunits in P700 reduction (mediated by PSI-F and -N) and oxidation (PSI-E), and state transitions (PSI-H). Based on the results, we also suggest for PSI-K a role in state transitions.


Asunto(s)
Arabidopsis/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Complejo de Proteína del Fotosistema I , Proteínas de Plantas/genética , beta Caroteno/análogos & derivados , Alelos , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Western Blotting , Clorofila/metabolismo , Complejos de Proteína Captadores de Luz , Luteína/metabolismo , Mutación , Oxidación-Reducción , Oxígeno/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Pigmentos Biológicos/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Homología de Secuencia de Ácido Nucleico , Tilacoides/metabolismo , Xantófilas/metabolismo , Zeaxantinas , beta Caroteno/metabolismo
13.
FEBS Lett ; 519(1-3): 99-102, 2002 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-12023025

RESUMEN

The pgr1 mutant of Arabidopsis thaliana carries a single point mutation (P194L) in the Rieske subunit of the cytochrome b6/f (cyt b6/f) complex and is characterised by a reduced electron transport activity at saturating light intensities in vivo. We have investigated the electron transport in this mutant under in vitro conditions. Measurements of P700 reduction kinetics and of photosynthetic electron transport rates indicated that electron transfer from cyt b6/f to photosystem I is not generally reduced in the mutant, but that the pH dependence of this reaction is altered. The data imply that the pH-dependent inactivation of electron transport through cyt b6/f is shifted by about 1 pH unit to more alkaline pH values in pgr1 thylakoids in comparison with wild-type thylakoids. This interpretation was confirmed by determination of the transmembrane deltapH at different stromal pH values showing that the lumen pH in pgr1 mutant plants cannot drop below pH 6 reflecting most likely a shift of the pK and/or the redox potential of the oxidised Rieske protein.


Asunto(s)
Arabidopsis/enzimología , Grupo Citocromo b/metabolismo , Complejo III de Transporte de Electrones , Proteínas Hierro-Azufre/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/metabolismo , Arabidopsis/química , Arabidopsis/genética , Clorofila/metabolismo , Grupo Citocromo b/genética , Complejo de Citocromo b6f , Transporte de Electrón/fisiología , Transporte de Electrón/efectos de la radiación , Concentración de Iones de Hidrógeno/efectos de la radiación , Técnicas In Vitro , Proteínas Hierro-Azufre/genética , Luz , Complejos de Proteína Captadores de Luz , Oxidación-Reducción , Fotosíntesis/fisiología , Fotosíntesis/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Complejo de Proteína del Fotosistema I , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutación Puntual , Subunidades de Proteína , Tilacoides/química , Tilacoides/metabolismo , Tilacoides/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA