Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Pharmacol Transl Sci ; 7(9): 2755-2783, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39296273

RESUMEN

6-Nitrobenzo[b]thiophene 1,1-dioxide (Stattic) is a potent signal transducer and activator of the transcription 3 (STAT3) inhibitor developed originally for anticancer therapy. However, Stattic harbors several STAT3 inhibition-independent biological effects. To improve the properties of Stattic, we prepared a series of analogues derived from 6-aminobenzo[b]thiophene 1,1-dioxide, a compound directly obtained from the reduction of Stattic, that includes a methoxybenzylamino derivative (K2071) with optimized physicochemical characteristics, including the ability to cross the blood-brain barrier. Besides inhibiting the interleukin-6-stimulated activity of STAT3 mediated by tyrosine 705 phosphorylation, K2071 also showed cytotoxicity against a set of human glioblastoma-derived cell lines. In contrast to the core compound, a part of K2071 cytotoxicity reflected a STAT3 inhibition-independent block of mitotic progression in the prophase, affecting mitotic spindle formation, indicating that K2071 also acts as a mitotic poison. Compared to Stattic, K2071 was significantly less thiol-reactive. In addition, K2071 affected cell migration, suppressed cell proliferation in tumor spheroids, exerted cytotoxicity for glioblastoma temozolomide-induced senescent cells, and inhibited the secretion of the proinflammatory cytokine monocyte chemoattractant protein 1 (MCP-1) in senescent cells. Importantly, K2071 was well tolerated in mice, lacking manifestations of acute toxicity. The structure-activity relationship analysis of the K2071 molecule revealed the necessity of the para-substituted methoxyphenyl motif for antimitotic but not overall cytotoxic activity of its derivatives. Altogether, these results indicate that compound K2071 is a novel Stattic-derived STAT3 inhibitor and a mitotic poison with anticancer and senotherapeutic properties that is effective on glioblastoma cells and may be further developed as an agent for glioblastoma therapy.

2.
RSC Med Chem ; 15(5): 1601-1625, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784455

RESUMEN

The investigation into human butyrylcholinesterase (hBChE) inhibitors as therapeutic agents for Alzheimer's disease (AD) holds significant promise, addressing both symptomatic relief and disease progression. In the pursuit of novel drug candidates with a selective BChE inhibition pattern, we focused on naturally occurring template structures, specifically Amaryllidaceae alkaloids of the carltonine-type. Herein, we explored a series of compounds implementing an innovative chemical scaffold built on the 3- and 4-benzyloxy-benzylamino chemotype. Notably, compounds 28 (hBChE IC50 = 0.171 ± 0.063 µM) and 33 (hBChE IC50 = 0.167 ± 0.018 µM) emerged as top-ranked hBChE inhibitors. In silico simulations elucidated the binding modes of these compounds within hBChE. CNS availability was predicted using the BBB score algorithm, corroborated by in vitro permeability assessments with the most potent derivatives. Compound 33 was also inspected for aqueous solubility, microsomal and plasma stability. Chemoinformatics analysis validated these hBChE inhibitors for oral administration, indicating favorable gastrointestinal absorption in compliance with Lipinski's and Veber's rules. Safety assessments, crucial for the chronic administration typical in AD treatment, were conducted through cytotoxicity testing on human neuroblastoma (SH-SY5Y) and hepatocellular carcinoma (HepG2) cell lines.

3.
Crit Rev Clin Lab Sci ; 59(8): 517-554, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35575431

RESUMEN

Vitamin D has a well-known role in the calcium homeostasis associated with the maintenance of healthy bones. It increases the efficiency of the intestinal absorption of dietary calcium, reduces calcium losses in urine, and mobilizes calcium stored in the skeleton. However, vitamin D receptors are present ubiquitously in the human body and indeed, vitamin D has a plethora of non-calcemic functions. In contrast to most vitamins, sufficient vitamin D can be synthesized in human skin. However, its production can be markedly decreased due to factors such as clothing, sunscreens, intentional avoidance of the direct sunlight, or the high latitude of the residence. Indeed, more than one billion people worldwide are vitamin D deficient, and the deficiency is frequently undiagnosed. The chronic deficiency is not only associated with rickets/osteomalacia/osteoporosis but it is also linked to a higher risk of hypertension, type 1 diabetes, multiple sclerosis, or cancer. Supplementation of vitamin D may be hence beneficial, but the intake of vitamin D should be under the supervision of health professionals because overdosing leads to intoxication with severe health consequences. For monitoring vitamin D, several analytical methods are employed, and their advantages and disadvantages are discussed in detail in this review.


Asunto(s)
Raquitismo , Deficiencia de Vitamina D , Humanos , Vitamina D/metabolismo , Vitamina D/uso terapéutico , Calcio , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/tratamiento farmacológico , Vitaminas , Raquitismo/complicaciones , Raquitismo/tratamiento farmacológico , Calcio de la Dieta
4.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34361074

RESUMEN

Alzheimer's disease (AD) is a multifactorial neurodegenerative condition of the central nervous system (CNS) that is currently treated by cholinesterase inhibitors and the N-methyl-d-aspartate receptor antagonist, memantine. Emerging evidence strongly supports the relevance of targeting butyrylcholinesterase (BuChE) in the more advanced stages of AD. Within this study, we have generated a pilot series of compounds (1-20) structurally inspired from belladine-type Amaryllidaceae alkaloids, namely carltonine A and B, and evaluated their acetylcholinesterase (AChE) and BuChE inhibition properties. Some of the compounds exhibited intriguing inhibition activity for human BuChE (hBuChE), with a preference for BuChE over AChE. Seven compounds were found to possess a hBuChE inhibition profile, with IC50 values below 1 µM. The most potent one, compound 6, showed nanomolar range activity with an IC50 value of 72 nM and an excellent selectivity pattern over AChE, reaching a selectivity index of almost 1400. Compound 6 was further studied by enzyme kinetics, along with in-silico techniques, to reveal the mode of inhibition. The prediction of CNS availability estimates that all the compounds in this survey can pass through the blood-brain barrier (BBB), as disclosed by the BBB score.


Asunto(s)
Acetilcolinesterasa/química , Alcaloides de Amaryllidaceae/química , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Simulación del Acoplamiento Molecular , Neuroblastoma/tratamiento farmacológico , Tiramina/análogos & derivados , Proliferación Celular , Inhibidores de la Colinesterasa/química , Simulación por Computador , Humanos , Neuroblastoma/patología , Relación Estructura-Actividad , Células Tumorales Cultivadas , Tiramina/química
5.
Bioorg Med Chem ; 41: 116209, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34015704

RESUMEN

Hydrazide-hydrazones have been described as a scaffold with antimicrobial and cytotoxic activities as well as iodinated compounds. A resistance rate of bacterial and fungal pathogens has increased considerably. That is why we synthesized and screened twenty-two iodinated hydrazide-hydrazones 1 and 2, ten 1,2-diacylhydrazines 3 and their three reduced analogues 4 for their antibacterial, antifungal, and cytotoxic properties. Hydrazide-hydrazones were prepared by condensation of 4-substituted benzohydrazides with 2-/4-hydroxy-3,5-diiodobenzaldehydes, diacylhydrazines from identical benzohydrazides and 3,5-diiodosalicylic acid via its chloride. These compounds were investigated in vitro against eight bacterial and eight fungal strains. The derivatives were found potent antibacterial agents against Gram-positive cocci including methicillin-resistant Staphylococcus aureus with the lowest values of minimum inhibitory concentrations (MIC) of 7.81 µM. Four compounds inhibited also human pathogenic fungi (MIC of ≥1.95 µM). The derivatives had different degrees of cytotoxicity for HepG2 and HK-2 cell lines (IC50 values from 11.72 and 26.80 µM, respectively). Importantly, normal human cells exhibited lower sensitivity. The apoptotic effect was also investigated. In general, the presence of 3,5-diiodosalicylidene scaffold (compounds 1) is translated into enhanced both antimicrobial and cytotoxic properties whereas its 4-hydroxy isomers 2 share a low biological activity. N'-Benzoyl-2-hydroxy-3,5-diiodobenzohydrazides 3 have a non-homogeneous activity profile. Focusing on 4-substituted benzohydrazide part, the presence of an electron-withdrawing group (F, Cl, CF3, NO2) was found to be beneficial.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antineoplásicos/farmacología , Hidrazinas/química , Hidrazonas/química , Antibacterianos/química , Antifúngicos/química , Antineoplásicos/química , Bacterias/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Descubrimiento de Drogas , Hongos/efectos de los fármacos , Células Hep G2 , Humanos
6.
J Labelled Comp Radiopharm ; 64(7): 262-270, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33818828

RESUMEN

The key factors participating in angiogenesis include vascular endothelial growth factor (VEGF) and its receptors (VEGFRs), particularly VEGFR2. Angiogenesis suppression comprises the blocking of the VEGFR2 binding site by the monoclonal antibody ramucirumab (RAM). Our study focused on RAM radiolabelling with zirconium-89 along with subsequent in vitro and in vivo biological evaluation. RAM was conjugated with the bifunctional chelator p-SCN-Bn-deferoxamine (DFO) and subsequently radiolabelled with [89 Zr]Zr-oxalate. The binding affinity of [89 Zr]Zr-DFO-RAM to VEGFR2 was tested in vitro on prostate (PC-3) and ovary adenocarcinoma (SK-OV-3) cell lines. The positron emission tomography/computed tomography (PET/CT) imaging and ex vivo biodistribution experiments were performed in PC-3 and SK-OV-3 xenografted mice. The in vitro experiments revealed the preserved binding affinity of [89 Zr]Zr-DFO-RAM to VEGFR2. The obtained ex vivo biodistribution data showed the uptake in PC-3 and SK-OV-3 tumours at about 8.7 ± 0.2 and 12.1 ± 1.6%ID/g, respectively. The tumour-to-muscle ratio for 1, 3 and 6 days post injection was 3.9, 5.5 and 5.12 for PC-3 and 6.0, 8.0 and 8.82 for SK-OV-3 tumours, respectively. PET/CT images showed high radioactivity accumulation in the tumours starting already on the first day after tracer administration. The obtained results proved the potency of [89 Zr]Zr-DFO-RAM to target and image VEGFR2-positive tumours in vivo.


Asunto(s)
Radioisótopos , Circonio
7.
Molecules ; 25(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230728

RESUMEN

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb), each year causing millions of deaths. In this article, we present the synthesis and biological evaluations of new potential antimycobacterial compounds containing a fragment of the first-line antitubercular drug pyrazinamide (PZA), coupled with methyl or ethyl esters of selected amino acids. The antimicrobial activity was evaluated on a variety of (myco)bacterial strains, including Mtb H37Ra, M. smegmatis, M. aurum, Staphylococcus aureus, Pseudomonas aeruginosa, and fungal strains, including Candida albicans and Aspergillus flavus. Emphasis was placed on the comparison of enantiomer activities. None of the synthesized compounds showed any significant activity against fungal strains, and their antibacterial activities were also low, the best minimum inhibitory concentration (MIC) value was 31.25 µM. However, several compounds presented high activity against Mtb. Overall, higher activity was seen in derivatives containing ʟ-amino acids. Similarly, the activity seems tied to the more lipophilic compounds. The most active derivative contained phenylglycine moiety (PC-ᴅ/ʟ-Pgl-Me, MIC < 1.95 µg/mL). All active compounds possessed low cytotoxicity and good selectivity towards Mtb. To the best of our knowledge, this is the first study comparing the activities of the ᴅ- and ʟ-amino acid derivatives of pyrazinamide as potential antimycobacterial compounds.


Asunto(s)
Aminoácidos/farmacología , Antibacterianos/farmacología , Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinamida/farmacología , Tuberculosis/tratamiento farmacológico , Aminoácidos/química , Aspergillus flavus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Mycobacterium smegmatis/efectos de los fármacos , Rotación Óptica , Pseudomonas aeruginosa/efectos de los fármacos , Pirazinamida/química , Staphylococcus aureus/efectos de los fármacos
8.
Biomolecules ; 10(1)2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861596

RESUMEN

4-aminobenzoic acid (PABA), an essential nutrient for many human pathogens, but dispensable for humans, and its derivatives have exhibited various biological activities. In this study, we combined two pharmacophores using a molecular hybridization approach: this vitamin-like molecule and various aromatic aldehydes, including salicylaldehydes and 5-nitrofurfural, via imine bond in one-step reaction. Resulting Schiff bases were screened as potential antimicrobial and cytotoxic agents. The simple chemical modification of non-toxic PABA resulted in constitution of antibacterial activity including inhibition of methicillin-resistant Staphylococcus aureus (minimum inhibitory concentrations, MIC, from 15.62 µM), moderate antimycobacterial activity (MIC ≥ 62.5 µM) and potent broad-spectrum antifungal properties (MIC of ≥ 7.81 µM). Some of the Schiff bases also exhibited notable cytotoxicity for cancer HepG2 cell line (IC50 ≥ 15.0 µM). Regarding aldehyde used for the derivatization of PABA, it is possible to tune up the particular activities and obtain derivatives with promising bioactivities.


Asunto(s)
Ácido 4-Aminobenzoico/farmacología , Antibacterianos/farmacología , Citotoxinas/farmacología , Ácido Fólico/química , Ácido 4-Aminobenzoico/química , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Citotoxinas/química , Ácido Fólico/farmacología , Células Hep G2 , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana
9.
Anticancer Res ; 39(2): 735-744, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30711952

RESUMEN

Background/Aim: Radiolabelling of monoclonal antibodies (mAbs) could be beneficial in cancer diagnosis and therapy, however it may cause structural changes and consequently deteriorate their immunoreactivity. Materials and Methods: The therapeutic mAb ramucirumab (RAM) was technetium-99m labelled using either a direct or an indirect method with the use of two bifunctional chelating agents (HYNIC, DTPA). The radiochemical purity was assessed using instant thin-layer chromatography (ITLC) and high-performance liquid chromatography (HPLC) technique. The affinity of radiolabelled RAM was tested on human cancer cell lines. Results: The radiolabelling provided the following stable compounds: [ 99m Tc]RAM, [ 99m Tc]HYNIC-RAM and [ 99m Tc]DTPA-RAM. Their radiochemical purity was over 95%. All prepared radiopharmaceuticals showed moderate affinity to the targeted receptor, in vitro. However, their affinity was one order lower compared to that of the natural mAb. Moreover, directly and DTPA-radiolabelled RAM demonstrated less favourable binding kinetics. Conclusion: Radiolabelling negatively affected the affinity of RAM to its targeted receptor.


Asunto(s)
Inhibidores de la Angiogénesis/química , Anticuerpos Monoclonales/química , Radiofármacos/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Inhibidores de la Angiogénesis/farmacología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Línea Celular Tumoral , Quelantes/química , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Semivida , Humanos , Concentración 50 Inhibidora , Masculino , Neoplasias de la Próstata/patología , Tecnecio , Distribución Tisular , Ramucirumab
10.
Eur J Med Chem ; 151: 824-835, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29679902

RESUMEN

The development of novel drugs is essential for the treatment of tuberculosis and other mycobacterial infections in future. A series of N-alkyl-2-isonicotinoylhydrazine-1-carboxamides was synthesized from isoniazid (INH) and then cyclized to N-alkyl-5-(pyridin-4-yl)-1,3,4-oxadiazole-2-amines. All derivatives were characterised spectroscopically. The compounds were screened for their in vitro antimycobacterial activity against susceptible and multidrug-resistant Mycobacterium tuberculosis (Mtb.) and nontuberculous mycobacteria (NTM; M. avium, M. kansasii). The most active carboxamides were substituted by a short n-alkyl, their activity was comparable to INH with minimum inhibitory concentrations (MICs) against Mtb. of 0.5-2 µM. Moreover, they are non-toxic for HepG2, and some of them are highly active against INH-resistant NTM (MICs ≥4 µM). Their cyclization to 1,3,4-oxadiazoles did not increase the activity. The experimentally proved mechanism of action of 2-isonicotinoylhydrazine-1-carboxamides consists of the inhibition of enoyl-ACP reductase (InhA) in a way similar to INH, which is blocking the biosynthesis of mycolic acids. N-Dodecyl-5-(pyridin-4-yl)-1,3,4-oxadiazol-2-amine as the most efficacious oxadiazole inhibits growth of both susceptible and drug-resistant Mtb. strains with uniform MIC values of 4-8 µM with no cross-resistance to antitubercular drugs including INH. The mechanism of action is not elucidated but it is different from INH. Obtained results qualify these promising derivatives for further investigation.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Isoniazida/análogos & derivados , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Oxadiazoles/química , Oxadiazoles/farmacología , Antituberculosos/síntesis química , Farmacorresistencia Bacteriana , Células Hep G2 , Humanos , Isoniazida/síntesis química , Pruebas de Sensibilidad Microbiana , Oxadiazoles/síntesis química , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
11.
Molecules ; 22(10)2017 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-29065539

RESUMEN

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) has become a frequently deadly infection due to increasing antimicrobial resistance. This serious issue has driven efforts worldwide to discover new drugs effective against Mtb. One research area is the synthesis and evaluation of pyrazinamide derivatives as potential anti-TB drugs. In this paper we report the synthesis and biological evaluations of a series of ureidopyrazines. Compounds were synthesized by reacting alkyl/aryl isocyanates with aminopyrazine or with propyl 5-aminopyrazine-2-carboxylate. Reactions were performed in pressurized vials using a CEM Discover microwave reactor with a focused field. Purity and chemical structures of products were assessed, and the final compounds were tested in vitro for their antimycobacterial, antibacterial, and antifungal activities. Propyl 5-(3-phenylureido)pyrazine-2-carboxylate (compound 4, MICMtb = 1.56 µg/mL, 5.19 µM) and propyl 5-(3-(4-methoxyphenyl)ureido)pyrazine-2-carboxylate (compound 6, MICMtb = 6.25 µg/mL, 18.91 µM) had high antimycobacterial activity against Mtb H37Rv with no in vitro cytotoxicity on HepG2 cell line. Therefore 4 and 6 are suitable for further structural modifications that might improve their biological activity and physicochemical properties. Based on the structural similarity to 1-(2-chloropyridin-4-yl)-3-phenylurea, a known plant growth regulator, two selected compounds were evaluated for similar activity as abiotic elicitors.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinas/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Proliferación Celular/efectos de los fármacos , Fagopyrum/química , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Reguladores del Crecimiento de las Plantas/síntesis química , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/farmacología , Pirazinamida/química , Pirazinamida/farmacología , Pirazinas/síntesis química , Pirazinas/química , Estrés Fisiológico/efectos de los fármacos
12.
Molecules ; 22(9)2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28925956

RESUMEN

The resistance among microbes has brought an urgent need for new drugs. Thus, we synthesized a series of Schiff bases derived from the sulfa drug sulfadiazine and various salicylaldehydes. The resulting 4-[(2-hydroxybenzylidene)amino]-N-(pyrimidin-2-yl)benzene-sulfonamides were characterized and evaluated against Gram-positive and Gram-negative bacteria, yeasts, moulds, Mycobacterium tuberculosis, nontuberculous mycobacteria (M. kansasii, M. avium) and their cytotoxicity was determined. Among bacteria, the genus Staphylococcus, including methicillin-resistant S. aureus, showed the highest susceptibility, with minimum inhibitory concentration values from 7.81 µM. The growth of Candida sp. and Trichophyton interdigitale was inhibited at concentrations starting from 1.95 µM. 4-[(2,5-Dihydroxybenzylidene)amino]-N-(pyrimidin-2-yl)-benzenesulfonamide was identified as the most selective Schiff base for these strains with no apparent cytotoxicity and a selectivity index higher than 16. With respect to M. tuberculosis and M. kansasii that were inhibited within the range of 8 to 250 µM, unsubstituted 4-[(2-hydroxy-benzylidene)amino]-N-(pyrimidin-2-yl)benzenesulfonamide meets the selectivity requirement. In general, dihalogenation of the salicylic moiety improved the antibacterial and antifungal activity but also increased the cytotoxicity, especially with an increasing atomic mass. Some derivatives offer more advantageous properties than the parent sulfadiazine, thus constituting promising hits for further antimicrobial drug development.


Asunto(s)
Aldehídos/síntesis química , Antiinfecciosos/síntesis química , Pirimidinas/síntesis química , Bases de Schiff/síntesis química , Sulfadiazina/análogos & derivados , Sulfadiazina/síntesis química , Aldehídos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Antifúngicos/farmacología , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Pirimidinas/farmacología , Bases de Schiff/farmacología , Relación Estructura-Actividad , Sulfadiazina/farmacología
13.
J Labelled Comp Radiopharm ; 60(1): 80-86, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27966236

RESUMEN

Radioimmunoassay belongs to the analytical method enabling highly specific and sensitive quantification of molecules. The verification of the real-time radioimmunoassay technology usefulness for ligand-quality characteristics evaluation such as concentration, influence of radiolabeling on binding affinity and stability was estimated. The anti-epidermal growth factor receptor antibody 131 I-cetuximab was employed as the ligand antibody. The concentration of 131 I-cetuximab was derived from the shape of binding curves coming from the ligand-receptor interaction. The binding curves also allowed the estimation of 131 I-cetuximab binding affinity for different radiolabeling procedures (incubation times 1, 5, and 10 minutes) in stability testing up to 96 hours at 4°C. The stability testing also included comparative analysis by size exclusion high-performance liquid chromatography. The assessment of cetuximab concentrations using real-time method showed acceptable accordance between real and calculated values. The real-time method revealed that 1-minute radiolabeling proved to be the optimal incubation time for direct radioiodination of cetuximab. Stability testing showed the significant change in radioligand affinity by one order at the longest incubation times (72 and 96 hours). Characterization of stability and binding behavior of radiolabeled monoclonal antibodies by the verified real-time method before use in other assays may be employed to eliminate variability and suboptimal antibody performance.


Asunto(s)
Antineoplásicos Inmunológicos/química , Cetuximab/química , Radioisótopos de Yodo/química , Ensayo de Unión Radioligante/métodos , Radiofármacos/química , Antineoplásicos Inmunológicos/farmacología , Línea Celular Tumoral , Cetuximab/farmacología , Humanos , Radioisótopos de Yodo/farmacología , Ligandos , Radioinmunoensayo/métodos , Radioinmunoensayo/normas , Ensayo de Unión Radioligante/normas , Radiofármacos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA