Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 443, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778263

RESUMEN

BACKGROUND: The latitudinal diversity gradient (LDG), characterized by an increase in species richness from the poles to the equator, is one of the most pervasive biological patterns. However, inverse LDGs, in which species richness peaks in extratropical regions, are also found in some lineages and their causes remain unclear. Here, we test the roles of evolutionary time, diversification rates, and niche conservatism in explaining the inverse LDG of Potentilla (ca. 500 species). We compiled the global distributions of ~ 90% of Potentilla species, and reconstructed a robust phylogenetic framework based on whole-plastome sequences. Next, we analyzed the divergence time, ancestral area, diversification rate, and ancestral niche to investigate the macroevolutionary history of Potentilla. RESULTS: The genus originated in the Qinghai-Tibet Plateau during the late Eocene and gradually spread to other regions of the Northern Hemisphere posterior to the late Miocene. Rapid cooling after the late Pliocene promoted the radiating diversification of Potentilla. The polyploidization, as well as some cold-adaptive morphological innovations, enhanced the adaptation of Potentilla species to the cold environment. Ancestral niche reconstruction suggests that Potentilla likely originated in a relatively cool environment. The species richness peaks at approximately 45 °N, a region characterized by high diversification rates, and the environmental conditions are similar to the ancestral climate niche. Evolutionary time was not significantly correlated with species richness in the latitudinal gradient. CONCLUSIONS: Our results suggest that the elevated diversification rates in middle latitude regions and the conservatism in thermal niches jointly determined the inverse LDG in Potentilla. This study highlights the importance of integrating evolutionary and ecological approaches to explain the diversity pattern of biological groups on a global scale.


Asunto(s)
Biodiversidad , Filogenia , Potentilla , Potentilla/genética , Potentilla/fisiología , Ecosistema , Evolución Biológica
2.
Ecol Evol ; 11(23): 17485-17495, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938523

RESUMEN

In the species-rich genus Impatiens, few natural hybrids are known, even though closely related species often occur sympatrically. In this study, we aim to bridge the gap between micro- and macro-evolution to disentangle pre- and postzygotic mechanisms that may prevent hybridization in the Impatiens purpureoviolacea complex from Central Africa. We analyzed habitat types, species distribution, pollination syndromes, pollinator dependency, genome sizes, and chromosome numbers of seven out of the ten species of the complex as well as of one natural hybrid and reconstructed the ancestral chromosome numbers of the complex. Several species of the complex occur in sympatry or geographically very close to each other. All of them are characterized by pre- and/or postzygotic mechanisms potentially preventing hybridization. We found four independent polyploidization events within the complex. The only known natural hybrid always appears as single individual and is self-fertile. But the plants resulting from self-pollinated seeds often die shortly after first flowering. These results indicate that the investigated mechanisms in combination may effectively but not absolutely prevent hybridization in Impatiens and probably occur in other genera with sympatric species as well.

3.
Nat Commun ; 11(1): 2382, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32404869

RESUMEN

Soil micro-organisms drive the global carbon and nutrient cycles that underlie essential ecosystem functions. Yet, we are only beginning to grasp the drivers of terrestrial microbial diversity and biogeography, which presents a substantial barrier to understanding community dynamics and ecosystem functioning. This is especially true for soil protists, which despite their functional significance have received comparatively less interest than their bacterial counterparts. Here, we investigate the diversification of Pinnularia borealis, a rare biosphere soil diatom species complex, using a global sampling of >800 strains. We document unprecedented high levels of species-diversity, reflecting a global radiation since the Eocene/Oligocene global cooling. Our analyses suggest diversification was largely driven by colonization of novel geographic areas and subsequent evolution in isolation. These results illuminate our understanding of how protist diversity, biogeographical patterns, and members of the rare biosphere are generated, and suggest allopatric speciation to be a powerful mechanism for diversification of micro-organisms.


Asunto(s)
Biodiversidad , Diatomeas/crecimiento & desarrollo , Ecosistema , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Diatomeas/clasificación , Diatomeas/genética , Evolución Molecular , Geografía , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
4.
PhytoKeys ; (110): 51-67, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425602

RESUMEN

The species-rich genus Impatiens (Balsaminaceae) is represented in Madagascar by no less than 260 species. We conducted molecular phylogenetic analyses of the Malagasy Impatiens based on nuclear and plastid data and 52 accessions (representing 33 species) to: 1) reassess the monophyly of the Malagasy Impatiens; 2) assess the monophyly of the sections Preimpatiens (Humblotianae and Vulgare groups) with spurs and Trimorphopetalum without spurs as delimited by Perrier de la Bâthie, as well as that of the subgenera Impatiens and Trimorphopetalum as defined by Fischer and Rahelivololona; 3) infer the current status of some morphologically variable species; and 4) test whether the species of Impatiens from the Marojejy National Park form a monophyletic group. The Malagasy Impatiens are further confirmed to be paraphyletic with respect of the Comorian I.auricoma. The present sectional and subgeneric classifications of the Malagasy Impatiens are partly supported, with strong support for the monophyly of the sect. or subgen. Trimorphopetalum. Section Preimpatiens was not supported as monophyletic and neither the Humblotianae group nor the Vulgare group is monophyletic. Impatienselatostemmoides, I. "hammarbyoides", I.inaperta, I.lyallii and I.manaharensis are either para- or polyphyletic and may represent morpho-species. The Impatiens species from the Marojejy National Park do not form a monophyletic group and therefore are suggested to be derived from numerous independent colonisation events from all over Madagascar followed by subsequent diversifications.

5.
Mol Phylogenet Evol ; 52(3): 806-24, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19398024

RESUMEN

Impatiens comprises more than 1000 species and is one of the largest genera of flowering plants. The genus has a subcosmopolitan distribution, yet most of its evolutionary history is unknown. Diversification analyses, divergence time estimates and historical biogeography, illustrated that the extant species of Impatiens originated in Southwest China and started to diversify in the Early Miocene. Until the Early Pliocene, the net diversification rate within the genus was fairly slow. Since that time, however, approximately 80% of all Impatiens lineages have originated. This period of rapid diversification coincides with the global cooling of the Earth's climate and subsequent glacial oscillations. Without this accelerated diversification rate, Impatiens would only have contained 1/5th of its current number of species, thereby indicating the rapid radiation of the genus.


Asunto(s)
Evolución Molecular , Especiación Genética , Impatiens/genética , Filogenia , Núcleo Celular/genética , China , Clima , ADN de Cloroplastos/genética , ADN de Plantas/genética , Impatiens/clasificación , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA