Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cardiovasc Res ; 115(1): 71-82, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29931050

RESUMEN

Aims: Chronic heart failure is becoming increasingly prevalent and is still associated with a high mortality rate. Myocardial hypertrophy and fibrosis drive cardiac remodelling and heart failure, but they are not sufficiently inhibited by current treatment strategies. Furthermore, despite increasing knowledge on cardiomyocyte intracellular signalling proteins inducing pathological hypertrophy, therapeutic approaches to target these molecules are currently unavailable. In this study, we aimed to establish and test a therapeutic tool to counteract the 22 kDa calcium and integrin binding protein (CIB) 1, which we have previously identified as nodal regulator of pathological cardiac hypertrophy and as activator of the maladaptive calcineurin/NFAT axis. Methods and results: Among three different sequences, we selected a shRNA construct (shCIB1) to specifically down-regulate CIB1 by 50% upon adenoviral overexpression in neonatal rat cardiomyocytes (NRCM), and upon overexpression by an adeno-associated-virus (AAV) 9 vector in mouse hearts. Overexpression of shCIB1 in NRCM markedly reduced cellular growth, improved contractility of bioartificial cardiac tissue and reduced calcineurin/NFAT activation in response to hypertrophic stimulation. In mice, administration of AAV-shCIB1 strongly ameliorated eccentric cardiac hypertrophy and cardiac dysfunction during 2 weeks of pressure overload by transverse aortic constriction (TAC). Ultrastructural and molecular analyses revealed markedly reduced myocardial fibrosis, inhibition of hypertrophy associated gene expression and calcineurin/NFAT as well as ERK MAP kinase activation after TAC in AAV-shCIB1 vs. AAV-shControl treated mice. During long-term exposure to pressure overload for 10 weeks, AAV-shCIB1 treatment maintained its anti-hypertrophic and anti-fibrotic effects, but cardiac function was no longer improved vs. AAV-shControl treatment, most likely resulting from a reduction in myocardial angiogenesis upon downregulation of CIB1. Conclusions: Inhibition of CIB1 by a shRNA-mediated gene therapy potently inhibits pathological cardiac hypertrophy and fibrosis during pressure overload. While cardiac function is initially improved by shCIB1, this cannot be kept up during persisting overload.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Insuficiencia Cardíaca/terapia , Hipertrofia Ventricular Izquierda/terapia , Miocitos Cardíacos/metabolismo , ARN Interferente Pequeño/metabolismo , Tratamiento con ARN de Interferencia , Disfunción Ventricular Izquierda/terapia , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Calcineurina/metabolismo , Proteínas de Unión al Calcio/genética , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/metabolismo , Neovascularización Fisiológica , ARN Interferente Pequeño/genética , Ratas Sprague-Dawley , Transducción de Señal , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología
2.
Hum Gene Ther Methods ; 25(2): 136-53, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24483184

RESUMEN

Human pluripotent stem cells (hPSCs) represent a prime cell source for pharmacological research and regenerative therapies because of their extensive expansion potential and their ability to differentiate into essentially all somatic lineages in vitro. Improved methods to stably introduce multiple transgenes into hPSCs will promote, for example, their preclinical testing by facilitating lineage differentiation and purification in vitro and the subsequent in vivo monitoring of respective progenies after their transplantation into relevant animal models. To date, the establishment of stable transgenic hPSC lines is still laborious and time-consuming. Current limitations include the low transfection efficiency of hPSCs via nonviral methods, the inefficient recovery of genetically engineered clones, and the silencing of transgene expression. Here we describe a fast, electroporation-based method for the generation of multitransgenic hPSC lines by overcoming the need for any preadaptation of conventional hPSC cultures to feeder-free conditions before genetic manipulation. We further show that the selection for a single antibiotic resistance marker encoded on one plasmid allowed for the stable genomic (co-)integration of up to two additional, independent expression plasmids. The method thereby enables the straightforward, nonviral generation of valuable multitransgenic hPSC lines in a single step. Practical applicability of the method is demonstrated for antibiotic-based lineage enrichment in vitro and for sodium iodide symporter transgene-based in situ cell imaging after intramyocardial cell infusion into explanted pig hearts.


Asunto(s)
Células Madre Pluripotentes/metabolismo , Transgenes/genética , Animales , Diferenciación Celular , Línea Celular , Resistencia a Medicamentos/genética , Vectores Genéticos/metabolismo , Corazón/diagnóstico por imagen , Humanos , Radioisótopos de Yodo/química , Ratones , Modelos Animales , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Plásmidos/metabolismo , Células Madre Pluripotentes/citología , Cintigrafía , Ratas , Porcinos , Simportadores/genética , Simportadores/metabolismo , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
3.
Am J Respir Crit Care Med ; 189(2): 167-82, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24279725

RESUMEN

RATIONALE: Hereditary pulmonary alveolar proteinosis (hPAP) caused by granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor α-chain (CSF2RA) deficiency is a rare, life-threatening lung disease characterized by accumulation of proteins and phospholipids in the alveolar spaces. The disease is caused by a functional insufficiency of alveolar macrophages, which require GM-CSF signaling for terminal differentiation and effective degradation of alveolar proteins and phospholipids. Therapeutic options are extremely limited, and the pathophysiology underlying the defective protein degradation in hPAP alveolar macrophages remains poorly understood. OBJECTIVES: To further elucidate the cellular mechanisms underlying hPAP and evaluate novel therapeutic strategies, we here investigated the potential of hPAP patient-derived induced pluripotent stem cell (PAP-iPSCs) derived monocytes and macrophages. METHODS: Patient-specific PAP-iPSCs were generated from CD34(+) bone marrow cells of a CSF2RA-deficient patient with PAP. We assessed pluripotency, chromosomal integrity, and genetic correction of established iPSC lines. On hematopoietic differentiation, genetically corrected or noncorrected monocytes and macrophages were investigated in GM-CSF-dependent assays. MEASUREMENTS AND MAIN RESULTS: Although monocytes and macrophages differentiated from noncorrected PAP-iPSCs exhibited distinct defects in GM-CSF-dependent functions, such as perturbed CD11b activation, phagocytic activity, and STAT5 phosphorylation after GM-CSF exposure and lack of GM-CSF uptake, these defects were fully repaired on lentiviral gene transfer of a codon-optimized CSF2RA-cDNA. CONCLUSIONS: These data establish PAP-iPSC-derived monocytes and macrophages as a valid in vitro disease model of CSF2RA-deficient PAP, and introduce gene-corrected iPSC-derived monocytes and macrophages as a potential autologous cell source for innovative therapeutic strategies. Transplantation of such cells to patients with hPAP could serve as a paradigmatic proof for the potential of iPSC-derived cells in clinical gene therapy.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X/terapia , Terapia Genética , Células Madre Pluripotentes Inducidas , Proteinosis Alveolar Pulmonar/terapia , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/deficiencia , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Preescolar , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Humanos , Macrófagos Alveolares/metabolismo , Modelos Biológicos , Monocitos/metabolismo , Proteinosis Alveolar Pulmonar/genética , Proteinosis Alveolar Pulmonar/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA