Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Intervalo de año de publicación
1.
Heliyon ; 9(3): e14238, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36950615

RESUMEN

The ability of stem cells to rapidly proliferate and differentiate is integral to the steady-state maintenance of tissues with high turnover such as the blood and intestine. Mutations that alter these processes can cause primary immunodeficiencies, malignancies and defects in barrier function. The Rho-kinases, Rock1 and Rock2, regulate cell shape and cytoskeletal rearrangement, activities essential to mitosis. Here, we use inducible gene targeting to ablate Rock1 and Rock2 in adult mice, and identify an obligate requirement for these enzymes in the preservation of the hematopoietic and gastrointestinal systems. Hematopoietic cell progenitors devoid of Rho-kinases display cell cycle arrest, blocking the differentiation to mature blood lineages. Similarly, these mice exhibit impaired epithelial cell renewal in the small intestine, which is ultimately fatal. Our data reveal a novel role for these kinases in the proliferation and viability of stem cells and their progenitors, which is vital to maintaining the steady-state integrity of these organ systems.

2.
EMBO J ; 40(18): e107336, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34309071

RESUMEN

During tumor growth-when nutrient and anabolic demands are high-autophagy supports tumor metabolism and growth through lysosomal organelle turnover and nutrient recycling. Ras-driven tumors additionally invoke non-autonomous autophagy in the microenvironment to support tumor growth, in part through transfer of amino acids. Here we uncover a third critical role of autophagy in mediating systemic organ wasting and nutrient mobilization for tumor growth using a well-characterized malignant tumor model in Drosophila melanogaster. Micro-computed X-ray tomography and metabolic profiling reveal that RasV12 ; scrib-/- tumors grow 10-fold in volume, while systemic organ wasting unfolds with progressive muscle atrophy, loss of body mass, -motility, -feeding, and eventually death. Tissue wasting is found to be mediated by autophagy and results in host mobilization of amino acids and sugars into circulation. Natural abundance Carbon 13 tracing demonstrates that tumor biomass is increasingly derived from host tissues as a nutrient source as wasting progresses. We conclude that host autophagy mediates organ wasting and nutrient mobilization that is utilized for tumor growth.


Asunto(s)
Autofagia , Metabolismo Energético , Neoplasias/etiología , Neoplasias/metabolismo , Nutrientes/metabolismo , Animales , Autofagia/genética , Caquexia/diagnóstico por imagen , Caquexia/etiología , Caquexia/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Drosophila melanogaster , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Neoplasias/complicaciones
3.
Cell Rep ; 33(8): 108423, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33238124

RESUMEN

In many tissues, stem cell (SC) proliferation is dynamically adjusted to regenerative needs. How SCs adapt their metabolism to meet the demands of proliferation and how changes in such adaptive mechanisms contribute to age-related dysfunction remain poorly understood. Here, we identify mitochondrial Ca2+ uptake as a central coordinator of SC metabolism. Live imaging of genetically encoded metabolite sensors in intestinal SCs (ISCs) of Drosophila reveals that mitochondrial Ca2+ uptake transiently adapts electron transport chain flux to match energetic demand upon proliferative activation. This tight metabolic adaptation is lost in ISCs of old flies, as declines in mitochondrial Ca2+ uptake promote a "Warburg-like" metabolic reprogramming toward aerobic glycolysis. This switch mimics metabolic reprogramming by the oncogene RasV12 and enhances ISC hyperplasia. Our data identify a critical mechanism for metabolic adaptation of tissue SCs and reveal how its decline sets aging SCs on a metabolic trajectory reminiscent of that seen upon oncogenic transformation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Hiperplasia/fisiopatología , Intestinos/fisiología , Células Madre/metabolismo , Envejecimiento , Animales , Senescencia Celular , Drosophila melanogaster , Intestinos/citología
4.
Annu Rev Physiol ; 82: 203-226, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31610128

RESUMEN

Regenerative processes that maintain the function of the gastrointestinal (GI) epithelium are critical for health and survival of multicellular organisms. In insects and vertebrates, intestinal stem cells (ISCs) regenerate the GI epithelium. ISC function is regulated by intrinsic, local, and systemic stimuli to adjust regeneration to tissue demands. These control mechanisms decline with age, resulting in significant perturbation of intestinal homeostasis. Processes that lead to this decline have been explored intensively in Drosophila melanogaster in recent years and are now starting to be characterized in mammalian models. This review presents a model for age-related regenerative decline in the fly intestine and discusses recent findings that start to establish molecular mechanisms of age-related decline of mammalian ISC function.


Asunto(s)
Envejecimiento/fisiología , Senescencia Celular/fisiología , Intestinos/citología , Intestinos/fisiología , Células Madre/fisiología , Animales , Células Epiteliales/fisiología , Humanos , Mucosa Intestinal/química , Mucosa Intestinal/fisiología , Regeneración/fisiología
5.
Ann N Y Acad Sci ; 1462(1): 27-36, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31655007

RESUMEN

Adult stem cells are rare, undifferentiated cells found in all tissues of the body. Although normally kept in a quiescent, nondividing state, these cells can proliferate and differentiate to replace naturally dying cells within their tissue and to repair its wounds in response to injury. Due to their proliferative nature and ability to regenerate tissue, adult stem cells have the potential to treat a variety of degenerative diseases as well as aging. In addition, since stem cells are often thought to be the source of malignant tumors, understanding the mechanisms that keep their proliferative abilities in check can pave the way for new cancer therapies. While adult stem cells have had limited practical and clinical applications to date, several clinical trials of stem cell-based therapies are underway. This report details recent research presented at the New York Academy of Sciences on March 14, 2019 on understanding the factors that regulate stem cell activity and differentiation, with the hope of translating these findings into the clinic.


Asunto(s)
Células Madre Adultas/trasplante , Medicina Regenerativa/tendencias , Informe de Investigación/tendencias , Trasplante de Células Madre/tendencias , Adulto , Células Madre Adultas/fisiología , Envejecimiento/patología , Animales , Diferenciación Celular/fisiología , Humanos , Neoplasias/patología , Neoplasias/terapia , Ciudad de Nueva York , Medicina Regenerativa/métodos , Trasplante de Células Madre/métodos
6.
Nat Commun ; 10(1): 4123, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511511

RESUMEN

In adult epithelial stem cell lineages, the precise differentiation of daughter cells is critical to maintain tissue homeostasis. Notch signaling controls the choice between absorptive and entero-endocrine cell differentiation in both the mammalian small intestine and the Drosophila midgut, yet how Notch promotes lineage restriction remains unclear. Here, we describe a role for the transcription factor Klumpfuss (Klu) in restricting the fate of enteroblasts (EBs) in the Drosophila intestine. Klu is induced in Notch-positive EBs and its activity restricts cell fate towards the enterocyte (EC) lineage. Transcriptomics and DamID profiling show that Klu suppresses enteroendocrine (EE) fate by repressing the action of the proneural gene Scute, which is essential for EE differentiation. Loss of Klu results in differentiation of EBs into EE cells. Our findings provide mechanistic insight into how lineage commitment in progenitor cell differentiation can be ensured downstream of initial specification cues.


Asunto(s)
Linaje de la Célula , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Enterocitos/citología , Intestinos/citología , Células Madre/citología , Factores de Transcripción/metabolismo , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Diferenciación Celular , Proliferación Celular , Modelos Biológicos , Unión Proteica , Receptores Notch/metabolismo , Transducción de Señal , Células Madre/metabolismo
7.
Nat Commun ; 10(1): 1050, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837466

RESUMEN

A decline in protein homeostasis (proteostasis) has been proposed as a hallmark of aging. Somatic stem cells (SCs) uniquely maintain their proteostatic capacity through mechanisms that remain incompletely understood. Here, we describe and characterize a 'proteostatic checkpoint' in Drosophila intestinal SCs (ISCs). Following a breakdown of proteostasis, ISCs coordinate cell cycle arrest with protein aggregate clearance by Atg8-mediated activation of the Nrf2-like transcription factor cap-n-collar C (CncC). CncC induces the cell cycle inhibitor Dacapo and proteolytic genes. The capacity to engage this checkpoint is lost in ISCs from aging flies, and we show that it can be restored by treating flies with an Nrf2 activator, or by over-expression of CncC or Atg8a. This limits age-related intestinal barrier dysfunction and can result in lifespan extension. Our findings identify a new mechanism by which somatic SCs preserve proteostasis, and highlight potential intervention strategies to maintain regenerative homeostasis.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Drosophila/metabolismo , Mucosa Intestinal/fisiología , Proteostasis/fisiología , Proteínas Represoras/metabolismo , Células Madre/fisiología , Animales , Animales Modificados Genéticamente , Puntos de Control del Ciclo Celular/fisiología , Drosophila melanogaster , Células Epiteliales/fisiología , Epitelio/fisiología , Femenino , Mucosa Intestinal/citología , Longevidad , Proteínas Nucleares/metabolismo
8.
Genetics ; 210(2): 357-396, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30287514

RESUMEN

The gastrointestinal tract has recently come to the forefront of multiple research fields. It is now recognized as a major source of signals modulating food intake, insulin secretion and energy balance. It is also a key player in immunity and, through its interaction with microbiota, can shape our physiology and behavior in complex and sometimes unexpected ways. The insect intestine had remained, by comparison, relatively unexplored until the identification of adult somatic stem cells in the Drosophila intestine over a decade ago. Since then, a growing scientific community has exploited the genetic amenability of this insect organ in powerful and creative ways. By doing so, we have shed light on a broad range of biological questions revolving around stem cells and their niches, interorgan signaling and immunity. Despite their relatively recent discovery, some of the mechanisms active in the intestine of flies have already been shown to be more widely applicable to other gastrointestinal systems, and may therefore become relevant in the context of human pathologies such as gastrointestinal cancers, aging, or obesity. This review summarizes our current knowledge of both the formation and function of the Drosophila melanogaster digestive tract, with a major focus on its main digestive/absorptive portion: the strikingly adaptable adult midgut.


Asunto(s)
Drosophila melanogaster/fisiología , Tracto Gastrointestinal/fisiología , Animales , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/embriología , Tracto Gastrointestinal/anatomía & histología , Tracto Gastrointestinal/embriología , Morfogénesis
9.
Cell Stem Cell ; 20(2): 161-175, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28157498

RESUMEN

Recent advances in our understanding of tissue regeneration and the development of efficient approaches to induce and differentiate pluripotent stem cells for cell replacement therapies promise exciting avenues for treating degenerative age-related diseases. However, clinical studies and insights from model organisms have identified major roadblocks that normal aging processes impose on tissue regeneration. These new insights suggest that specific targeting of environmental niche components, including growth factors, ECM, and immune cells, and intrinsic stem cell properties that are affected by aging will be critical for the development of new strategies to improve stem cell function and optimize tissue repair processes.


Asunto(s)
Envejecimiento/fisiología , Rejuvenecimiento/fisiología , Trasplante de Células Madre/métodos , Animales , Senescencia Celular , Humanos , Medicina Regenerativa , Células Madre/citología
10.
Dev Biol ; 419(2): 373-381, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27570230

RESUMEN

The gastrointestinal (GI) tract of metazoans is lined by a series of regionally distinct epithelia. To maintain structure and function of the GI tract, regionally diversified differentiation of somatic stem cell (SC) lineages is critical. The adult Drosophila midgut provides an accessible model to study SC regulation and specification in a regionally defined manner. SCs of the posterior midgut (PM) have been studied extensively, but the control of SCs in the middle midgut (MM) is less well understood. The MM contains a stomach-like copper cell region (CCR) that is regenerated by gastric stem cells (GSSCs) and contains acid-secreting copper cells (CCs). Bmp-like Decapentaplegic (Dpp) signaling determines the identity of GSSCs, and is required for CC regeneration, yet the precise control of Dpp signaling activity in this lineage remains to be fully established. Here, we show that Dad, a negative feedback regulator of Dpp signaling, is dynamically regulated in the GSSC lineage to allow CC differentiation. Dad is highly expressed in GSSCs and their first daughter cells, the gastroblasts (GBs), but has to be repressed in differentiating CCs to allow Dpp-mediated differentiation into CCs. We find that the Hox gene ultrabithorax (Ubx) is required for this regulation. Loss of Ubx prevents Dad repression in the CCR, resulting in defective CC regeneration. Our study highlights the need for dynamic control of Dpp signaling activity in the differentiation of the GSSC lineage and identifies Ubx as a critical regulator of this process.


Asunto(s)
Cobre/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Proteínas de Homeodominio/fisiología , Intestinos/fisiología , Regeneración/fisiología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Células Epiteliales/metabolismo , Retroalimentación Fisiológica , Femenino , Ácido Gástrico/metabolismo , Genes Homeobox , Genes Reporteros , Proteínas de Homeodominio/genética , Intestinos/citología , Proteínas Nucleares/fisiología , Transducción de Señal , Células Madre/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
11.
Cell Stem Cell ; 18(5): 564-6, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27152439

RESUMEN

A high-fat diet is linked to elevated cancer risk, yet this link remains poorly understood. New studies in mice are now beginning to obtain mechanistic insight into how high-fat diets perturb stem cell function and cause cancers.


Asunto(s)
Dieta Alta en Grasa , Grasas de la Dieta , Animales , Carcinogénesis , Transformación Celular Neoplásica , Ratones , Células Madre
12.
Dis Model Mech ; 9(5): 487-99, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27112333

RESUMEN

The gastrointestinal tract of complex metazoans is highly compartmentalized. It is lined by a series of specialized epithelia that are regenerated by specific populations of stem cells. To maintain tissue homeostasis, the proliferative activity of stem and/or progenitor cells has to be carefully controlled and coordinated with regionally distinct programs of differentiation. Metaplasias and dysplasias, precancerous lesions that commonly occur in the human gastrointestinal tract, are often associated with the aberrant proliferation and differentiation of stem and/or progenitor cells. The increasingly sophisticated characterization of stem cells in the gastrointestinal tract of mammals and of the fruit fly Drosophila has provided important new insights into these processes and into the mechanisms that drive epithelial dysfunction. In this Review, we discuss recent advances in our understanding of the establishment, maintenance and regulation of diverse intestinal stem cell lineages in the gastrointestinal tract of Drosophila and mice. We also discuss the field's current understanding of the pathogenesis of epithelial dysfunctions.


Asunto(s)
Enfermedad , Drosophila melanogaster/fisiología , Tracto Gastrointestinal/citología , Salud , Células Madre/citología , Animales , Humanos , Transducción de Señal
13.
Dev Biol ; 413(1): 50-9, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26972874

RESUMEN

Regulated Apoptosis (Programmed Cell Death, PCD) maintains tissue homeostasis in adults, and ensures proper growth and morphogenesis of tissues during development of metazoans. Accordingly, defects in cellular processes triggering or executing apoptotic programs have been implicated in a variety of degenerative and neoplastic diseases. Here, we report the identification of DCAF12, an evolutionary conserved member of the WD40-motif repeat family of proteins, as a new regulator of apoptosis in Drosophila. We find that DCAF12 is required for Diap1 cleavage in response to pro-apoptotic signals, and is thus necessary and sufficient for RHG (Reaper, Hid, and Grim)-mediated apoptosis. Loss of DCAF12 perturbs the elimination of supernumerary or proliferation-impaired cells during development, and enhances tumor growth induced by loss of neoplastic tumor suppressors, highlighting the wide requirement for DCAF12 in PCD.


Asunto(s)
Apoptosis , Proteínas de Drosophila/fisiología , Alelos , Animales , Animales Modificados Genéticamente , Caspasas/metabolismo , Proliferación Celular , Cruzamientos Genéticos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Eliminación de Gen , Homeostasis , Homocigoto , Proteínas Inhibidoras de la Apoptosis/metabolismo , Masculino , Metamorfosis Biológica , Morfogénesis , Mutación , Fenotipo , Retina/embriología
14.
Cell Host Microbe ; 19(2): 240-53, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26867182

RESUMEN

Compartmentalization of the gastrointestinal (GI) tract of metazoans is critical for health. GI compartments contain specific microbiota, and microbiota dysbiosis is associated with intestinal dysfunction. Dysbiosis develops in aging intestines, yet how this relates to changes in GI compartmentalization remains unclear. The Drosophila GI tract is an accessible model to address this question. Here we show that the stomach-like copper cell region (CCR) in the middle midgut controls distribution and composition of the microbiota. We find that chronic activation of JAK/Stat signaling in the aging gut induces a metaplasia of the gastric epithelium, CCR decline, and subsequent commensal dysbiosis and epithelial dysplasia along the GI tract. Accordingly, inhibition of JAK/Stat signaling in the CCR specifically prevents age-related metaplasia, commensal dysbiosis and functional decline in old guts, and extends lifespan. Our results establish a mechanism by which age-related chronic inflammation causes the decline of intestinal compartmentalization and microbiota dysbiosis, limiting lifespan.


Asunto(s)
Drosophila/crecimiento & desarrollo , Drosophila/microbiología , Disbiosis/microbiología , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Factores de Edad , Animales , Drosophila/genética , Drosophila/metabolismo , Disbiosis/genética , Disbiosis/metabolismo , Disbiosis/fisiopatología , Tracto Gastrointestinal/crecimiento & desarrollo , Quinasas Janus/genética , Quinasas Janus/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal
15.
Cell Stem Cell ; 16(6): 601-12, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26046760

RESUMEN

Aging is characterized by a decrease in genome integrity, impaired organ maintenance, and an increased risk of cancer, which coincide with clonal dominance of expanded mutant stem and progenitor cell populations in aging tissues, such as the intestinal epithelium, the hematopoietic system, and the male germline. Here we discuss possible explanations for age-associated increases in the initiation and/or progression of mutant stem/progenitor clones and highlight the roles of stem cell quiescence, replication-associated DNA damage, telomere shortening, epigenetic alterations, and metabolic challenges as determinants of stem cell mutations and clonal dominance in aging.


Asunto(s)
Envejecimiento/genética , Mutación/genética , Neoplasias/genética , Células Madre/metabolismo , Animales , Epigénesis Genética , Humanos , Acortamiento del Telómero
16.
Nat Cell Biol ; 17(6): 736-48, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26005834

RESUMEN

Coordination of stem cell activity with inflammatory responses is critical for regeneration and homeostasis of barrier epithelia. The temporal sequence of cell interactions during injury-induced regeneration is only beginning to be understood. Here we show that intestinal stem cells (ISCs) are regulated by macrophage-like haemocytes during the early phase of regenerative responses of the Drosophila intestinal epithelium. On tissue damage, haemocytes are recruited to the intestine and secrete the BMP homologue DPP, inducing ISC proliferation by activating the type I receptor Saxophone and the Smad homologue SMOX. Activated ISCs then switch their response to DPP by inducing expression of Thickveins, a second type I receptor that has previously been shown to re-establish ISC quiescence by activating MAD. The interaction between haemocytes and ISCs promotes infection resistance, but also contributes to the development of intestinal dysplasia in ageing flies. We propose that similar interactions influence pathologies such as inflammatory bowel disease and colorectal cancer in humans.


Asunto(s)
Drosophila melanogaster/citología , Hemocitos/citología , Mucosa Intestinal/citología , Células Madre/citología , Uniones Estrechas/inmunología , Transporte Activo de Núcleo Celular , Envejecimiento/inmunología , Animales , Animales Modificados Genéticamente , Proliferación Celular , Células Cultivadas , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Activación Enzimática/inmunología , Receptores ErbB/metabolismo , Hemocitos/metabolismo , Hemocitos/trasplante , Tolerancia Inmunológica/inmunología , Inflamación/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Quinasas Janus/metabolismo , Esperanza de Vida , Macrófagos/inmunología , Proteínas Serina-Treonina Quinasas/biosíntesis , Receptores de Superficie Celular/biosíntesis , Receptores de Péptidos de Invertebrados/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Regeneración/inmunología , Proteínas Smad Reguladas por Receptores/metabolismo , Células Madre/inmunología , Células Madre/metabolismo
17.
Dev Cell ; 32(1): 9-18, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25584795

RESUMEN

Studies in flies, mice, and human models have provided a conceptual framework for how paracrine interactions between damaged cells and the surrounding tissue control tissue repair. These studies have amassed evidence for an evolutionarily conserved secretory program that regulates tissue homeostasis. This program coordinates cell survival and proliferation during tissue regeneration and repair in young animals. By virtue of chronic engagement, however, it also contributes to the age-related decline of tissue homeostasis leading to degeneration, metabolic dysfunction, and cancer. Here, we review recent studies that shed light on the nature and regulation of this evolutionarily conserved secretory program.


Asunto(s)
Envejecimiento/fisiología , Evolución Biológica , Homeostasis/fisiología , Cicatrización de Heridas/fisiología , Animales , Dípteros , Humanos , Masculino , Ratones
18.
PLoS Genet ; 10(8): e1004568, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25166757

RESUMEN

The Unfolded Protein Response of the endoplasmic reticulum (UPRER) controls proteostasis by adjusting the protein folding capacity of the ER to environmental and cell-intrinsic conditions. In metazoans, loss of proteostasis results in degenerative and proliferative diseases and cancers. The cellular and molecular mechanisms causing these phenotypes remain poorly understood. Here we show that the UPRER is a critical regulator of intestinal stem cell (ISC) quiescence in Drosophila melanogaster. We find that ISCs require activation of the UPRER for regenerative responses, but that a tissue-wide increase in ER stress triggers ISC hyperproliferation and epithelial dysplasia in aging animals. These effects are mediated by ISC-specific redox signaling through Jun-N-terminal Kinase (JNK) and the transcription factor CncC. Our results identify a signaling network of proteostatic and oxidative stress responses that regulates ISC function and regenerative homeostasis in the intestinal epithelium.


Asunto(s)
Intestinos/citología , Estrés Oxidativo/genética , Células Madre/citología , Respuesta de Proteína Desplegada/genética , Animales , Proliferación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Retículo Endoplásmico/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Proteínas Represoras/genética , Transducción de Señal
20.
Cell ; 156(1-2): 109-22, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439372

RESUMEN

Interactions between commensals and the host impact the metabolic and immune status of metazoans. Their deregulation is associated with age-related pathologies like chronic inflammation and cancer, especially in barrier epithelia. Maintaining a healthy commensal population by preserving innate immune homeostasis in such epithelia thus promises to promote health and longevity. Here, we show that, in the aging intestine of Drosophila, chronic activation of the transcription factor Foxo reduces expression of peptidoglycan recognition protein SC2 (PGRP-SC2), a negative regulator of IMD/Relish innate immune signaling, and homolog of the anti-inflammatory molecules PGLYRP1-4. This repression causes deregulation of Rel/NFkB activity, resulting in commensal dysbiosis, stem cell hyperproliferation, and epithelial dysplasia. Restoring PGRP-SC2 expression in enterocytes of the intestinal epithelium, in turn, prevents dysbiosis, promotes tissue homeostasis, and extends lifespan. Our results highlight the importance of commensal control for lifespan of metazoans and identify SC-class PGRPs as longevity-promoting factors.


Asunto(s)
Proteínas Portadoras/metabolismo , Drosophila melanogaster/microbiología , Drosophila melanogaster/fisiología , Inmunidad Innata , Longevidad/inmunología , Modelos Animales , Animales , Citocinas/inmunología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/inmunología , Disbiosis/inmunología , Disbiosis/microbiología , Factores de Transcripción Forkhead/metabolismo , Homeostasis , Intestinos/inmunología , Intestinos/microbiología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA