Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Med Chem ; 67(5): 3959-3985, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38427954

RESUMEN

Chitinase-3-like-1 (CHI3L1), also known as YKL-40, is a glycoprotein linked to inflammation, fibrosis, and cancer. This study explored CHI3L1's interactions with various oligosaccharides using microscale thermophoresis (MST) and AlphaScreen (AS). These investigations guided the development of high-throughput screening assays to assess interference of small molecules in binding between CHI3L1 and biotinylated small molecules or heparan sulfate-based probes. Small molecule binders of YKL-40 were identified in our chitotriosidase inhibitors library with MST and confirmed through X-ray crystallography. Based on cocrystal structures of potent hit compounds with CHI3L1, small molecule probes 19 and 20 were designed for an AS assay. Structure-based optimization led to compounds 30 and 31 with nanomolar activities and drug-like properties. Additionally, an orthogonal AS assay using biotinylated heparan sulfate as a probe was developed. The compounds' affinity showed a significant correlation in both assays. These screening tools and compounds offer novel avenues for investigating the role of CHI3L1.


Asunto(s)
Quitinasas , Proteína 1 Similar a Quitinasa-3 , Glicoproteínas , Ensayos Analíticos de Alto Rendimiento , Heparitina Sulfato
2.
Eur J Med Chem ; 264: 116033, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38096651

RESUMEN

Arginase is a multifaced enzyme that plays an important role in health and disease being regarded as a therapeutic target for the treatment of various pathological states such as malignancies, asthma, and cardiovascular disease. The discovery of boronic acid-based arginase inhibitors in 1997 revolutionized attempts of medicinal chemistry focused on development of drugs targeting arginase. Unfortunately, these very polar compounds had limitations such as analysis and purification without chromophores, synthetically challenging space, and poor oral bioavailability. Herein, we present a novel class of boronic acid-based arginase inhibitors which are piperidine derivatives exhibiting a different pharmacological profile compared to our drug candidate in cancer immunotherapy -OATD-02 - dual ARG1/2 inhibitor with high intracellular activity. Compounds from this new series show low intracellular activity, hence they can inhibit mainly extracellular arginase, providing different therapeutic space compared to a dual intracellular ARG1/2 inhibitor. The disclosed series showed good inhibitory potential towards arginase enzyme in vitro (IC50 up to 160 nM), favorable pharmacokinetics in animal models, and encouraging preliminary in vitro and in vivo tolerability. Compounds from the new series have moderate-to-high oral bioavailability (up to 66 %) and moderate clearance in vivo. Herein we describe the development and optimization of the synthesis of the new class of boronic acid-based arginase inhibitors via a ring expansion approach starting from the inexpensive chirality source (d-hydroxyproline). This upgraded methodology facilitated a gram-scale delivery of the final compound and eliminated the need for costly and time-consuming chiral resolution.


Asunto(s)
Arginasa , Inhibidores Enzimáticos , Animales , Arginasa/química , Inhibidores Enzimáticos/química , Ácidos Borónicos/farmacología , Hidroxiprolina , Química Farmacéutica
3.
Mol Cancer Ther ; 22(7): 807-817, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-36939275

RESUMEN

Pharmacologic inhibition of the controlling immunity pathway enzymes arginases 1 and 2 (ARG1 and ARG2) is a promising strategy for cancer immunotherapy. Here, we report the discovery and development of OATD-02, an orally bioavailable, potent arginases inhibitor. The unique pharmacologic properties of OATD-02 are evidenced by targeting intracellular ARG1 and ARG2, as well as long drug-target residence time, moderate to high volume of distribution, and low clearance, which may jointly provide a weapon against arginase-related tumor immunosuppression and ARG2-dependent tumor cell growth. OATD-02 monotherapy had an antitumor effect in multiple tumor models and enhanced an efficacy of the other immunomodulators. Completed nonclinical studies and human pharmacokinetic predictions indicate a feasible therapeutic window and allow for proposing a dose range for the first-in-human clinical study in patients with cancer. SIGNIFICANCE: We have developed an orally available, small-molecule intracellular arginase 1 and 2 inhibitor as a potential enhancer in cancer immunotherapy. Because of its favorable pharmacologic properties shown in nonclinical studies, OATD-02 abolishes tumor immunosuppression induced by both arginases, making it a promising drug candidate entering clinical trials.


Asunto(s)
Arginasa , Neoplasias , Humanos , Arginasa/metabolismo , Neoplasias/tratamiento farmacológico , Inmunoterapia
4.
Cancers (Basel) ; 14(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36010962

RESUMEN

BACKGROUND: Arginases play essential roles in metabolic pathways, determining the fitness of both immune and tumour cells. Along with the previously validated role of ARG1 in cancer, the particular significance of ARG2 as a therapeutic target has emerged as its levels correlate with malignant phenotype and poor prognosis. These observations unveil arginases, and specifically ARG2, as well-validated and promising therapeutic targets. OATD-02, a new boronic acid derivative, is the only dual inhibitor, which can address the benefits of pharmacological inhibition of arginase 1 and 2 in cancer. METHODS: The inhibitory activity of OATD-02 was determined using recombinant ARG1 and ARG2, as well as in a cellular system using primary hepatocytes and macrophages. In vivo antitumor activity was determined in syngeneic models of colorectal and kidney carcinomas (CT26 and Renca, respectively), as well as in an ARG2-dependent xenograft model of leukaemia (K562). RESULTS: OATD-02 was shown to be a potent dual (ARG1/ARG2) arginase inhibitor with a cellular activity necessary for targeting ARG2. Compared to a reference inhibitor with predominant extracellular activity towards ARG1, we have shown improved and statistically significant antitumor efficacy in the CT26 model and an immunomodulatory effect reflected by Treg inhibition in the Renca model. Importantly, OATD-02 had a superior activity when combined with other immunotherapeutics. Finally, OATD-02 effectively inhibited the proliferation of human K562 leukemic cells both in vitro and in vivo. CONCLUSIONS: OATD-02 is a potent small-molecule arginase inhibitor with optimal drug-like properties, including PK/PD profile. Excellent activity against intracellular ARG2 significantly distinguishes OATD-02 from other arginase inhibitors. OATD-02 represents a very promising drug candidate for the combined treatment of tumours, and is the only pharmacological tool that can effectively address the benefits of ARG1/ARG2 inhibition. OATD-02 will enter clinical trials in cancer patients in 2022.

5.
J Med Chem ; 63(24): 15527-15540, 2020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33078933

RESUMEN

Chitotriosidase (CHIT1) and acidic mammalian chitinase (AMCase) are the enzymatically active chitinases that have been implicated in the pathology of chronic lung diseases such as asthma and interstitial lung diseases (ILDs), including idiopathic pulmonary fibrosis (IPF) and sarcoidosis. The clinical and preclinical data suggest that pharmacological inhibition of CHIT1 might represent a novel therapeutic approach in IPF. Structural modification of an advanced lead molecule 3 led to the identification of compound 9 (OATD-01), a highly active CHIT1 inhibitor with both an excellent PK profile in multiple species and selectivity against a panel of other off-targets. OATD-01 given orally once daily in a range of doses between 30 and 100 mg/kg showed significant antifibrotic efficacy in an animal model of bleomycin-induced pulmonary fibrosis. OATD-01 is the first-in-class CHIT1 inhibitor, currently completed phase 1b of clinical trials, to be a potential treatment for IPF.


Asunto(s)
Quitinasas/antagonistas & inhibidores , Inhibidores Enzimáticos/uso terapéutico , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Piperidinas/química , Administración Oral , Animales , Sitios de Unión , Bleomicina/toxicidad , Dominio Catalítico , Quitinasas/metabolismo , Ensayos Clínicos Fase I como Asunto , Modelos Animales de Enfermedad , Perros , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Femenino , Semivida , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Piperidinas/farmacocinética , Piperidinas/uso terapéutico , Ratas , Relación Estructura-Actividad
6.
Bioorg Med Chem ; 25(16): 4265-4276, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28662964

RESUMEN

Cyclolinopeptide A (CLA), an immunosuppressive nonapeptide derived from linen seeds, was modified with S or R-γ4-bis(homo-phenylalanine) in positions 3 or 4, or both 3 and 4. These modifications changed the flexibility of new analogues and distribution of intramolecular hydrogen bonds. Analogues 11 c(Pro1-Pro2-Phe3-S-γ4-hhPhe4-Leu5-Ile6-Ile7-Leu8-Val9), 13 c(Pro1-Pro2-S-γ4-hhPhe3-R-γ4-hhPhe4-Leu5-Ile6-Ile7-Leu8-Val9) and 15 c(Pro1-Pro2-R-γ4-hhPhe3-Phe4-Leu5-Ile6-Ile7-Leu8-Val9) existed as a mixture of stable cis/trans isomers of Pro-Pro peptide bond. The comparison of the relative spatial orientations in crystal state of the two carbonyl groups, neighboring γ-amino acids, revealed conformational similarities to α-peptides. The addition of two -CH2- groups in γ-amino acids led to a more rigid conformation, although a more flexible one was expected. A significant difference in the relative orientation of the carbonyl groups was found for cyclic γ-peptides with a dominance of an antiparallel arrangement. As carbonyl groups may be engaged in the interactions with plausible receptors through hydrogen bonds, a similar biological activity of the modified peptides was expected. Our biological studies showed that certain cyclic, but not the corresponding linear peptides, lowered the viability of peripheral blood mononuclear cells (PBMC) at 100µg/mL concentration. The proliferation of PBMC induced by phytohemagglutinin A (PHA) was strongly inhibited by cyclic peptides only, in a dose-dependant manner. On the other hand, lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α) production in whole blood cell cultures was inhibited by both linear and cyclic peptides. Peptide 15 c(Pro1-Pro2-R-γ4-hhPhe3-Phe4-Leu5-Ile6-Ile7-Leu8-Val9) blocked the expression of caspase-3, inhibited the expression of caspases-8 and -9 in 24h culture of Jurkat cells, and caused DNA fragmentation in these cells, as an indicator of apoptosis. Thus, we revealed a new mechanism of immunosuppressive action of a nonapeptide.


Asunto(s)
Aminobutiratos/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Péptidos Cíclicos/farmacología , Aminobutiratos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Células Jurkat , Lipopolisacáridos/farmacología , Estructura Molecular , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Relación Estructura-Actividad
7.
Eur J Med Chem ; 86: 515-27, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25203781

RESUMEN

Cyclolinopeptide A, naturally occurring immunomodulatory nonapeptide, was modified with S or R-γ(3)-bis(homophenylalanine) in positions 3 or 4, or both 3 and 4. The replacement of one or both Phe residues by γ(3)-hhPhe led to decrease of their conformational flexibility in the analogues in comparison to CLA. All cyclic peptides, except 11, exist as isomers with the cis Pro-Pro peptide bond. Cyclic peptide 11 with single modification S-γ(3)-hhPhe(4) exists as a mixture of two isomers and the major isomer (89%) contains all peptide bonds of the trans geometry. The peptides were subjected to several immunological tests in vitro and in vivo. Linear peptides 1-8, precursors of CLA analogues 9-16, were not toxic against human peripheral blood mononuclear cells (PBMC) but cyclic analogues showed dose-dependent toxicity with exception of peptide 11. Linear peptides did not inhibit mitogen-induced PBMC proliferation whereas cyclic ones inhibited the proliferation in a dose-dependent manner. The actions of linear and cyclic peptides with regard to lipopolysaccharide (LPS) -induced tumour necrosis factor alpha (TNF α) production in whole human blood cultures were differential but particularly suppressive in the case of linear compound 6. Therefore, for in vivo tests compounds 6 and 11 were selected. The compounds showed comparable, suppressive actions in induction and effector phases of delayed type hypersensitivity as well as in the carrageenan-induced foot pad edema in mouse models. In summary, linear peptide 6 and cyclic peptide 11 are attractive as potential immune suppressor drugs.


Asunto(s)
Terapia de Inmunosupresión , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Fenilalanina/análogos & derivados , Animales , Carragenina , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/inmunología , Femenino , Humanos , Hipersensibilidad Tardía/inmunología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Masculino , Ratones , Ratones Endogámicos CBA , Estructura Molecular , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/inmunología , Fenilalanina/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA