Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Immunol ; 212(11): 1706-1713, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38619286

RESUMEN

Mucosal-Associated Invariant T (MAIT) cells are a population of innate T cells that play a critical role in host protection against bacterial and viral pathogens. Upon activation, MAIT cells can rapidly respond via both TCR-dependent and -independent mechanisms, resulting in robust cytokine production. The metabolic and nutritional requirements for optimal MAIT cell effector responses are still emerging. Iron is an important micronutrient and is essential for cellular fitness, in particular cellular metabolism. Iron is also critical for many pathogenic microbes, including those that activate MAIT cells. However, iron has not been investigated with respect to MAIT cell metabolic or functional responses. In this study, we show that human MAIT cells require exogenous iron, transported via CD71 for optimal metabolic activity in MAIT cells, including their production of ATP. We demonstrate that restricting iron availability by either chelating environmental iron or blocking CD71 on MAIT cells results in impaired cytokine production and proliferation. These data collectively highlight the importance of a CD71-iron axis for human MAIT cell metabolism and functionality, an axis that may have implications in conditions where iron availability is limited.


Asunto(s)
Antígenos CD , Citocinas , Hierro , Activación de Linfocitos , Células T Invariantes Asociadas a Mucosa , Receptores de Transferrina , Humanos , Células T Invariantes Asociadas a Mucosa/inmunología , Hierro/metabolismo , Receptores de Transferrina/metabolismo , Receptores de Transferrina/inmunología , Antígenos CD/metabolismo , Antígenos CD/inmunología , Activación de Linfocitos/inmunología , Citocinas/metabolismo , Proliferación Celular , Células Cultivadas , Adenosina Trifosfato/metabolismo
2.
Mol Metab ; 81: 101900, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354856

RESUMEN

The pyruvate transporter MPC1 (mitochondrial pyruvate carrier 1) acts as a tumour-suppressor, loss of which correlates with a pro-tumorigenic phenotype and poor survival in several tumour types. In high-grade serous ovarian cancers (HGSOC), patients display copy number loss of MPC1 in around 78% of cases and reduced MPC1 mRNA expression. To explore the metabolic effect of reduced expression, we demonstrate that depleting MPC1 in HGSOC cell lines drives expression of key proline biosynthetic genes; PYCR1, PYCR2 and PYCR3, and biosynthesis of proline. We show that altered proline metabolism underpins cancer cell proliferation, reactive oxygen species (ROS) production, and type I and type VI collagen formation in ovarian cancer cells. Furthermore, exploring The Cancer Genome Atlas, we discovered the PYCR3 isozyme to be highly expressed in a third of HGSOC patients, which was associated with more aggressive disease and diagnosis at a younger age. Taken together, our study highlights that targeting proline metabolism is a potential therapeutic avenue for the treatment of HGSOC.


Asunto(s)
Transportadores de Ácidos Monocarboxílicos , Neoplasias Ováricas , Femenino , Humanos , Proliferación Celular , Colágeno , Transportadores de Ácidos Monocarboxílicos/genética , Neoplasias Ováricas/genética , Prolina
3.
Proc Natl Acad Sci U S A ; 120(25): e2300566120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307453

RESUMEN

Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells which recognize a limited repertoire of ligands presented by the MHC class-I like molecule MR1. In addition to their key role in host protection against bacterial and viral pathogens, MAIT cells are emerging as potent anti-cancer effectors. With their abundance in human, unrestricted properties, and rapid effector functions MAIT cells are emerging as attractive candidates for immunotherapy. In the current study, we demonstrate that MAIT cells are potent cytotoxic cells, rapidly degranulating and inducing target cell death. Previous work from our group and others has highlighted glucose metabolism as a critical process for MAIT cell cytokine responses at 18 h. However, the metabolic processes supporting rapid MAIT cell cytotoxic responses are currently unknown. Here, we show that glucose metabolism is dispensable for both MAIT cell cytotoxicity and early (<3 h) cytokine production, as is oxidative phosphorylation. We show that MAIT cells have the machinery required to make (GYS-1) and metabolize (PYGB) glycogen and further demonstrate that that MAIT cell cytotoxicity and rapid cytokine responses are dependent on glycogen metabolism. In summary, we show that glycogen-fueled metabolism supports rapid MAIT cell effector functions (cytotoxicity and cytokine production) which may have implications for their use as an immunotherapeutic agent.


Asunto(s)
Glucogenólisis , Células T Invariantes Asociadas a Mucosa , Humanos , Citocinas , Glucógeno , Glucosa
4.
Commun Biol ; 5(1): 586, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705689

RESUMEN

Placental function and dysfunction differ by sex but the mechanisms are unknown. Here we show that sex differences in polyamine metabolism are associated with escape from X chromosome inactivation of the gene encoding spermine synthase (SMS). Female placental trophoblasts demonstrate biallelic SMS expression, associated with increased SMS mRNA and enzyme activity. Polyamine depletion in primary trophoblasts reduced glycolysis and oxidative phosphorylation resulting in decreased acetyl-coA availability and global histone hypoacetylation in a sex-dependent manner. Chromatin-immunoprecipitation sequencing and RNA-sequencing identifies progesterone biosynthesis as a target of polyamine regulated gene expression, and polyamine depletion reduced progesterone release in male trophoblasts. The effects of polyamine depletion can be attributed to spermine as SMS-silencing recapitulated the effects on energy metabolism, histone acetylation, and progesterone release. In summary, spermine metabolism alters trophoblast gene expression through acetyl-coA biosynthesis and histone acetylation, and SMS escape from X inactivation explains some features of human placental sex differences.


Asunto(s)
Histonas , Trofoblastos , Acetilcoenzima A/metabolismo , Acetilación , Femenino , Expresión Génica , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Placenta/metabolismo , Poliaminas/metabolismo , Embarazo , Progesterona/metabolismo , Espermina , Trofoblastos/metabolismo
5.
Nat Commun ; 12(1): 1209, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619282

RESUMEN

Fructose intake has increased substantially throughout the developed world and is associated with obesity, type 2 diabetes and non-alcoholic fatty liver disease. Currently, our understanding of the metabolic and mechanistic implications for immune cells, such as monocytes and macrophages, exposed to elevated levels of dietary fructose is limited. Here, we show that fructose reprograms cellular metabolic pathways to favour glutaminolysis and oxidative metabolism, which are required to support increased inflammatory cytokine production in both LPS-treated human monocytes and mouse macrophages. A fructose-dependent increase in mTORC1 activity drives translation of pro-inflammatory cytokines in response to LPS. LPS-stimulated monocytes treated with fructose rely heavily on oxidative metabolism and have reduced flexibility in response to both glycolytic and mitochondrial inhibition, suggesting glycolysis and oxidative metabolism are inextricably coupled in these cells. The physiological implications of fructose exposure are demonstrated in a model of LPS-induced systemic inflammation, with mice exposed to fructose having increased levels of circulating IL-1ß after LPS challenge. Taken together, our work underpins a pro-inflammatory role for dietary fructose in LPS-stimulated mononuclear phagocytes which occurs at the expense of metabolic flexibility.


Asunto(s)
Fructosa/farmacología , Glutamina/metabolismo , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/toxicidad , Ácidos/metabolismo , Animales , Ciclo del Ácido Cítrico/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Glucosa/farmacología , Glucólisis/efectos de los fármacos , Marcaje Isotópico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Análisis de Flujos Metabólicos , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Fenotipo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
6.
J Proteome Res ; 16(9): 3168-3179, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28587463

RESUMEN

To understand the interaction between diet and health, biomarkers that accurately reflect consumption of foods of perceived health relevance are needed. The aim of this investigation was to use direct infusion-mass spectrometry (DI-MS) lipidomics to determine the effects of fish oil supplementation on lipid profiles of human adipose tissue. Adipose tissue samples from an n-3 polyunsaturated fatty acid (PUFA) supplementation study (n = 66) were analyzed to compare the pattern following supplementation equivalent to zero or four portions of oily fish per week. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were incorporated into highly unsaturated (≥5 double bonds) triglycerides (TGs), phosphocholines, and phosphoethanolamines as well as being detected directly as the nonesterified fatty acid forms. Multivariate statistics demonstrated that phospholipids were the most accurate and sensitive lipids for the assessing EPA and DHA incorporation into adipose tissue. Potential confounding factors (adiposity, age, and sex of the subject) were also considered in the analysis, and adiposity was also associated with an increase in highly unsaturated TGs as a result of incorporation of the n-6 PUFA arachidonic acid. DI-MS provides a high-throughput analysis of fatty acid status that can monitor oily fish consumption, suitable for use in cohort studies.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Suplementos Dietéticos , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Aceites de Pescado/administración & dosificación , Metabolismo de los Lípidos/efectos de los fármacos , Tejido Adiposo/química , Tejido Adiposo/metabolismo , Adulto , Animales , Peso Corporal , Estudios de Casos y Controles , Ácidos Grasos no Esterificados/metabolismo , Ácidos Grasos Omega-6/metabolismo , Femenino , Aceites de Pescado/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Fosfolípidos/metabolismo , Análisis de Componente Principal , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA