Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
2.
Xenotransplantation ; 31(3): e12863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751087

RESUMEN

Overexpression of human CD200 (hCD200) in porcine endothelial cells (PECs) has been reported to suppress xenogeneic immune responses of human macrophages against porcine endothelial cells. The current study aimed to address whether the above-mentioned beneficial effect of hCD200 is mediated by overcoming the molecular incompatibility between porcine CD200 (pCD200) and hCD200 receptor or simply by increasing the expression levels of CD200 without any molecular incompatibility across the two species. We overexpressed hCD200 or pCD200 using lentiviral vectors with V5 marker in porcine endothelial cells and compared their suppressive activity against U937-derived human macrophage-like cells (hMCs) and primary macrophages. In xenogeneic coculture of porcine endothelial cells and human macrophage-like cells or macrophages, hCD200-porcine endothelial cells suppressed phagocytosis and cytotoxicity of human macrophages to a greater extent than pCD200-porcine endothelial cells. Secretion of tumor necrosis factor-α, interleukin-1ß, and monocyte chemoattractant protein-1 from human macrophages and expression of M1 phenotypes (inducible nitric oxide synthase, dectin-1, and CD86) were also suppressed by hCD200 to a greater extent than pCD200. Furthermore, in signal transduction downstream of CD200 receptor, hCD200 induced Dok2 phosphorylation and suppressed IκB phosphorylation to a greater extent than pCD200. The above data supported the possibility of a significant molecular incompatibility between pCD200 and human CD200 receptor, suggesting that the beneficial effects of hCD200 overexpression in porcine endothelial cells could be mediated by overcoming the molecular incompatibility across the species barrier rather than by simple overexpression effects of CD200.


Asunto(s)
Antígenos CD , Células Endoteliales , Macrófagos , Trasplante Heterólogo , Animales , Humanos , Antígenos CD/inmunología , Antígenos CD/metabolismo , Antígenos CD/genética , Porcinos , Macrófagos/inmunología , Macrófagos/metabolismo , Trasplante Heterólogo/métodos , Células Endoteliales/inmunología , Fagocitosis , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Receptores de Orexina/inmunología , Técnicas de Cocultivo
3.
Heliyon ; 10(7): e28440, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38689964

RESUMEN

Introduction: Mitochondrial fission process 1 (MTFP1) is an inner mitochondrial membrane (IMM) protein implicated in the development and progression of various tumors, particularly lung squamous cell carcinoma (LUSC). This study aims to provide a more theoretical basis for the treatment of LUSC. Methods: Through bioinformatics analysis, MTFP1 was identified as a novel target gene of HIF1A. MTFP1 expression in LUSC was examined using The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Proteomics Data Commons (PDC) databases. The Kaplan-Meier plotter (KM plotter) database was utilized to evaluate its correlation with patient survival. Western blot and chromatin immunoprecipitation (ChIP) assays were employed to confirm the regulatory relationship between MTFP1 and HIF1A. Additionally, cell proliferation, colony formation, and migration assays were conducted to investigate the mechanism by which MTFP1 enhances LUSC cell proliferation and metastasis. Results: Our findings revealed that MTFP1 overexpression correlated with poor prognosis in LUSC patients(P < 0.05). Moreover, MTFP1 was closely associated with hypoxia and glycolysis in LUSC (R = 0.203; P < 0.001, R = 0.391; P < 0.001). HIF1A was identified as a positive regulator of MTFP1. Functional enrichment analysis demonstrated that MTFP1 played a role in controlling LUSC cell proliferation. Cell proliferation, colony formation, and migration assays indicated that MTFP1 promoted LUSC cell proliferation and metastasis by activating the glycolytic pathway (P < 0.05). Conclusions: This study establishes MTFP1 as a novel HIF1A target gene that promotes LUSC growth by activating the glycolytic pathway. Investigating MTFP1 may contribute to the development of effective therapies for LUSC patients, particularly those lacking targeted oncogene therapies.

4.
Cell Death Dis ; 15(5): 332, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740744

RESUMEN

Ovarian cancer (OV) poses a significant challenge in clinical settings due to its difficulty in early diagnosis and treatment resistance. FOXP4, belonging to the FOXP subfamily, plays a pivotal role in various biological processes including cancer, cell cycle regulation, and embryonic development. However, the specific role and importance of FOXP4 in OV have remained unclear. Our research showed that FOXP4 is highly expressed in OV tissues, with its elevated levels correlating with poor prognosis. We further explored FOXP4's function through RNA sequencing and functional analysis in FOXP4-deficient cells, revealing its critical role in activating the Wnt signaling pathway. This activation exacerbates the malignant phenotype in OV. Mechanistically, FOXP4 directly induces the expression of protein tyrosine kinase 7 (PTK7), a Wnt-binding receptor tyrosine pseudokinase, which causes abnormal activation of the Wnt signaling pathway. Disrupting the FOXP4-Wnt feedback loop by inactivating the Wnt signaling pathway or reducing FOXP4 expression resulted in the reduction of the malignant phenotype of OV cells, while restoring PTK7 expression reversed this effect. In conclusion, our findings underscore the significance of the FOXP4-induced Wnt pathway activation in OV, suggesting the therapeutic potential of targeting this pathway in OV treatment.


Asunto(s)
Factores de Transcripción Forkhead , Neoplasias Ováricas , Proteínas Tirosina Quinasas Receptoras , Vía de Señalización Wnt , Humanos , Femenino , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Línea Celular Tumoral , Animales , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , beta Catenina/metabolismo , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Desnudos , Proliferación Celular
5.
Mol Cell Endocrinol ; 589: 112253, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38670220

RESUMEN

Ovarian cancer stands as a formidable clinical challenge, with limited therapeutic options. This investigation delves into the intricate molecular mechanisms governing ovarian cancer progression and uncovers Centromere Protein K (CENPK) as a central figure in disease pathogenesis. Elevated CENPK levels within ovarian cancer tissues conspicuously align with adverse clinical outcomes, positioning CENPK as a promising prognostic biomarker. Deeper exploration reveals a direct transcriptional connection between CENPK and the E2F1 transcription factor and clearly establishes E2F1's role as the master regulator of CENPK expression in ovarian cancer. Our inquiry revealing a suppression of tumor-promoting signaling pathways, most notably the mTOR pathway, upon CENPK silencing. Intriguingly, CENPK renders ovarian cancer cells more responsive to the mTOR inhibitor rapamycin, introducing a promising avenue for therapeutic intervention. In summation, our study unravels the multifaceted role of CENPK in ovarian cancer progression. It emerges as a prognostic indicator, a pivotal mediator of cell proliferation and tumorigenicity, and a regulator of the mTOR pathway, shedding light on potential therapeutic avenues for this formidable disease.

6.
Cell Signal ; 119: 111180, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38642782

RESUMEN

CXXC5, a zinc-finger protein, is known for its role in epigenetic regulation via binding to unmethylated CpG islands in gene promoters. As a transcription factor and epigenetic regulator, CXXC5 modulates various signaling processes and acts as a key coordinator. Altered expression or activity of CXXC5 has been linked to various pathological conditions, including tumorigenesis. Despite its known role in cancer, CXXC5's function and mechanism in ovarian cancer are unclear. We analyzed multiple public databases and found that CXXC5 is highly expressed in ovarian cancer, with high expression correlating with poor patient prognosis. We show that CXXC5 expression is regulated by oxygen concentration and is a direct target of HIF1A. CXXC5 is critical for maintaining the proliferative potential of ovarian cancer cells, with knockdown decreasing and overexpression increasing cell proliferation. Loss of CXXC5 led to inactivation of multiple inflammatory signaling pathways, while overexpression activated these pathways. Through in vitro and in vivo experiments, we confirmed ZNF143 and EGR1 as downstream transcription factors of CXXC5, mediating its proliferative potential in ovarian cancer. Our findings suggest that the CXXC5-ZNF143/EGR1 axis forms a network driving ovarian cell proliferation and tumorigenesis, and highlight CXXC5 as a potential therapeutic target for ovarian cancer treatment.


Asunto(s)
Proliferación Celular , Proteínas de Unión al ADN , Proteína 1 de la Respuesta de Crecimiento Precoz , Regulación Neoplásica de la Expresión Génica , Inflamación , Neoplasias Ováricas , Transactivadores , Activación Transcripcional , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Línea Celular Tumoral , Transactivadores/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Animales , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ratones Desnudos , Transducción de Señal , Ratones
7.
Redox Biol ; 72: 103137, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642502

RESUMEN

The oncogene Aurora kinase A (AURKA) has been implicated in various tumor, yet its role in meningioma remains unexplored. Recent studies have suggested a potential link between AURKA and ferroptosis, although the underlying mechanisms are unclear. This study presented evidence of AURKA upregulation in high grade meningioma and its ability to enhance malignant characteristics. We identified AURKA as a suppressor of erastin-induced ferroptosis in meningioma. Mechanistically, AURKA directly interacted with and phosphorylated kelch-like ECH-associated protein 1 (KEAP1), thereby activating nuclear factor erythroid 2 related factor 2 (NFE2L2/NRF2) and target genes transcription. Additionally, forkhead box protein M1 (FOXM1) facilitated the transcription of AURKA. Suppression of AURKA, in conjunction with erastin, yields significant enhancements in the prognosis of a murine model of meningioma. Our study elucidates an unidentified mechanism by which AURKA governs ferroptosis, and strongly suggests that the combination of AURKA inhibition and ferroptosis-inducing agents could potentially provide therapeutic benefits for meningioma treatment.


Asunto(s)
Aurora Quinasa A , Ferroptosis , Proteína Forkhead Box M1 , Meningioma , Factor 2 Relacionado con NF-E2 , Piperazinas , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Aurora Quinasa A/metabolismo , Aurora Quinasa A/genética , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Animales , Ratones , Meningioma/metabolismo , Meningioma/genética , Meningioma/patología , Piperazinas/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patología , Neoplasias Meníngeas/tratamiento farmacológico , Resistencia a Antineoplásicos/genética
8.
Ecotoxicol Environ Saf ; 277: 116401, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677069

RESUMEN

Exposure to fine particulate matter (PM) is associated with the neurodegenerative diseases. Coke oven emissions (COEs) in occupational environment are important sources of PM. However, its neurotoxicity is still unclear. Therefore, evaluating the toxicological effects of COE on the nervous system is necessary. In the present study, we constructed mouse models of COE exposure by tracheal instillation. Mice exposed to COE showed signs of cognitive impairment. This was accompanied by a decrease in miR-145a-5p and an increase in SIK1 expression in the hippocampus, along with synaptic structural damage. Our results demonstrated that COE-induced miR-145a-5p downregulation could increase the expression of SIK1 and phosphorylated SIK1, inhibiting the cAMP/PKA/CREB pathway by activating PDE4D, which was associated with reduced synaptic structural plasticity. Furthermore, restoring of miR-145a-5p expression based on COE exposure in HT22 cells could partially reversed the negative effects of COE exposure through the SIK1/PDE4D/cAMP axis. Collectively, our findings link epigenetic regulation with COE-induced neurotoxicity and imply that miR-145a-5p could be an early diagnostic marker for neurological diseases in patients with COE occupational exposure.


Asunto(s)
Disfunción Cognitiva , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , MicroARNs , Plasticidad Neuronal , Proteínas Serina-Treonina Quinasas , Animales , MicroARNs/genética , Ratones , Disfunción Cognitiva/inducido químicamente , Plasticidad Neuronal/efectos de los fármacos , Masculino , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , AMP Cíclico/metabolismo , Hipocampo/efectos de los fármacos , Ratones Endogámicos C57BL , Contaminantes Atmosféricos/toxicidad , Material Particulado/toxicidad
9.
Transl Vis Sci Technol ; 13(4): 11, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38578634

RESUMEN

Background: The purpose of this study was to explore the protective effect of a shape memory polymeric shield on corneal endothelium during phacoemulsification in rabbits. Methods: Poly-(glycerol dodecanedioate) (PGD) with a transition temperature of 24.416°C was prepared to make a shape memory shield with a thickness of 100 µm, an arc length of 14 mm, and a radius of curvature of 8.8 mm. In the control group, a phaco-tip with bevel-down was used to simulate injury to the corneal endothelium by phacoemulsification in rabbits. In the experimental group, the pre-cooled and curled shape memory shield was injected into and removed from the anterior chamber before and after phaco-power release. Anterior segment optical coherence tomography (AS-OCT), confocal microscope, trypan blue/alizarin red staining, and scanning electron microscope were performed to measure endothelial damage after surgery. Results: One day postoperatively, the lost cell ratio of the control group and the experimental group were 28.08 ± 5.21% and 3.50 ± 1.43%, respectively (P < 0.0001), the damaged cell ratios were 11.83 ± 2.30% and 2.55 ± 0.52%, respectively (P < 0.0001), and the central corneal thicknesses (CCT) were 406.75 ± 16.74 µm and 340. 5 ±13.48 µm, respectively (P < 0.0001). Seven days postoperatively, the endothelial cell density (ECD) of the control group and the experimental group were 1674 ± 285/mm2 and 2561 ± 554/mm2, respectively (P < 0.05). The above differences were all statistically significant. Conclusions: This PGD based shape memory shield has a protective effect on corneal endothelium during phacoemulsification. It reduces postoperative corneal edema and ECD decrease in the short term after surgery. Translational Relevance: The shape memory PGD "shield" in this study may have a use in certain human patients with vulnerable corneas of low endothelial cell count or shallow anterior chambers.


Asunto(s)
Endotelio Corneal , Facoemulsificación , Animales , Humanos , Conejos , Facoemulsificación/efectos adversos , Facoemulsificación/métodos , Córnea , Cámara Anterior
10.
Artículo en Inglés | MEDLINE | ID: mdl-38430181

RESUMEN

Objective: Gestational diabetes mellitus (GDM) is a metabolic disorder that occurs in 3-5% of pregnancies. The inflammatory response is essential to the development of GDM. Resistant dextrin is a natural fiber and exhibits an antidiabetic effect against diabetes. We investigate resistant dextrin's preventive role and underlying mechanism against STZ-induced GDM. Material and method: Female Wistar rats were utilized, and GDM was induced in pregnant rats using STZ. The levels of glycated hemoglobin (HbA1c), resistin, serum-c-peptide, free fatty acid, antioxidant, hepatic glycogen, lipid, inflammatory cytokines, apoptosis, and inflammatory parameters were estimated. mRNA expression of Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor kappa B (NF-κB) and NOD-like receptor protein 3 (NLRP3) was estimated. We also estimated the histopathology of pancreatic and liver tissue. Result: Body weight, plasma insulin, fetal body weight, and blood glucose levels were all considerably (P < .001) improved by resistant dextrin, while placental weight and blood sugar levels were also decreased. Resistant dextrin significantly (P < .001) suppressed the levels of HbA1c, resistin, serum-c-peptide, and hepatic glycogen and improved the free fatty acid (FFA) level. Resistant dextrin significantly (P < .001) altered the level of adiponectin, leptin, intercellular Adhesion Molecule 1 (ICAM-1), and visfatin; antioxidant parameters such as malonaldehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione S-transferase GST, inflammatory cytokines like tumor necrosis factor- α (TNF-α), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-2 (IL-2), interferon- γ (INF-γ), interleukin-10 (IL-10); apoptosis parameters include Bcl-2, caspase-3, and Bax, respectively. Resistant dextrin significantly (P < .001) suppressed the mRNA expression of NF-κB, MyD88, NLRP3, and TLR4. Resistant dextrin altered the histopathological changes in the pancreas and hepatic tissue. Discussion and Conclusion: In short, resistant dextrin demonstrated a protective effect against STZ-induced GDM by modulating the TLR4/MyD88/NF-κB signaling pathway.

11.
Sci Transl Med ; 16(739): eadg5553, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507470

RESUMEN

Glioblastoma, the most lethal primary brain tumor, harbors glioma stem cells (GSCs) that not only initiate and maintain malignant phenotypes but also enhance therapeutic resistance. Although frequently mutated in glioblastomas, the function and regulation of PTEN in PTEN-intact GSCs are unknown. Here, we found that PTEN directly interacted with MMS19 and competitively disrupted MMS19-based cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) machinery in differentiated glioma cells. PTEN was specifically succinated at cysteine (C) 211 in GSCs compared with matched differentiated glioma cells. Isotope tracing coupled with mass spectrometry analysis confirmed that fumarate, generated by adenylosuccinate lyase (ADSL) in the de novo purine synthesis pathway that is highly activated in GSCs, promoted PTEN C211 succination. This modification abrogated the interaction between PTEN and MMS19, reactivating the CIA machinery pathway in GSCs. Functionally, inhibiting PTEN C211 succination by reexpressing a PTEN C211S mutant, depleting ADSL by shRNAs, or consuming fumarate by the US Food and Drug Administration-approved prescription drug N-acetylcysteine (NAC) impaired GSC maintenance. Reexpressing PTEN C211S or treating with NAC sensitized GSC-derived brain tumors to temozolomide and irradiation, the standard-of-care treatments for patients with glioblastoma, by slowing CIA machinery-mediated DNA damage repair. These findings reveal an immediately practicable strategy to target GSCs to treat glioblastoma by combination therapy with repurposed NAC.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamiento farmacológico , Hierro/metabolismo , Glioma/tratamiento farmacológico , Neoplasias Encefálicas/tratamiento farmacológico , Células Madre Neoplásicas/patología , Azufre/metabolismo , Azufre/uso terapéutico , Fumaratos , Línea Celular Tumoral , Fosfohidrolasa PTEN/metabolismo
12.
Cell Death Dis ; 15(1): 33, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212299

RESUMEN

Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), and prolonged ER stress leads to cell apoptosis. Despite increasing research in this area, the underlying molecular mechanisms remain unclear. Here, we discover that ER stress upregulates the UPR signaling pathway while downregulating E2F target gene expression and inhibiting the G2/M phase transition. Prolonged ER stress decreases the mRNA levels of E2F2, which specifically regulates the expression of F-Box Protein 5(FBXO5), an F-box protein that functions as an inhibitor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase complex. Depletion of FBXO5 results in increased ER stress-induced apoptosis and decreased expression of proteins related to PERK/IRE1α/ATF6 signaling. Overexpression of FBXO5 wild-type (not its ΔF-box mutant) alleviates apoptosis and the expression of the C/EBP Homologous Protein (CHOP)/ATF. Mechanistically, we find that FBXO5 directly binds to and promotes the ubiquitin-dependent degradation of RNF183, which acts as a ubiquitin E3 ligase in regulating ER stress-induced apoptosis. Reversal of the apoptosis defects caused by FBXO5 deficiency in colorectal cancer cells can be achieved by knocking down RNF183 in FBXO5-deficient cells. Functionally, we observed significant upregulation of FBXO5 in colon cancer tissues, and its silencing suppresses tumor occurrence in vivo. Therefore, our study highlights the critical role of the FBXO5/RNF183 axis in ER stress regulation and identifies a potential therapeutic target for colon cancer treatment.


Asunto(s)
Neoplasias del Colon , Proteínas F-Box , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Endorribonucleasas/metabolismo , Estrés del Retículo Endoplásmico/genética , Respuesta de Proteína Desplegada , Ubiquitina/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Neoplasias del Colon/genética , Apoptosis/genética , Proteínas de Ciclo Celular/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
13.
Diagn Pathol ; 19(1): 7, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178203

RESUMEN

BACKGROUND: Acetyl-CoA acetyltransferase 2 (ACAT2) is a lipid metabolism enzyme and rarely was researched in epithelial ovarian cancer (EOC). METHODS: ACAT2 expressions were confirmed in two pairs of cell lines (A2780 and A2780/DDP, OVCAR8 and OVCAR8/DDP) from Gene Expression Omnibus database by bioinformatics analysis, and in A2780 and A2780/DDP cell lines by quantitative real-time polymerase chain reaction and western blotting. Tissue samples were stained by immunohistochemistry and scored for ACAT2 expression. The relationships between ACAT2 expression and clinicopathological characteristics were analyzed by χ2 test. The prognosis of ACAT2 was analyzed by the log-rank tests and Cox regression models. RESULTS: ACAT2 was remarkably upregulated in the above drug-resistant cell lines by mRNA (all P < 0.05) and protein expression (P = 0.026) than those in sensitive ones. Patients were classified as ACAT2-high (n = 51) and ACAT2-low (n = 26) according to immunohistochemical score. ACAT2 expression had a significantly inverse correlation with FIGO stage (P = 0.030) and chemo-response (P = 0.041). A marginal statistical significance existed in ACAT2 expression and ascites volume (P = 0.092). Univariate analysis suggested that high-expressed ACAT2 was associated with decreased platinum-free interval (PFI) (8.57 vs. 14.13 months, P = 0.044), progression-free survival (PFS) (14.12 vs. 19.79 months, P = 0.039) and overall survival (OS) (36.89 vs. 52.40 months, P = 0.044). Multivariate analysis demonstrated that ACAT2 expression (hazard ratio = 2.18, 95% confidence interval: 1.15-4.11, P = 0.017) affected OS independently, rather than PFI and PFS. CONCLUSION: The expression of ACAT2 in A2780/DDP and OVCAR8/DDP was higher than the corresponding A2780 and OVCAR8. High-expressed ACAT2 was associated with advanced FIGO stage, chemo-resistance, and decreased PFI, PFS and OS. It was an independent prognostic factor of OS in EOC.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Ováricas , Femenino , Humanos , Acetiltransferasas , Carcinoma Epitelial de Ovario/patología , Línea Celular Tumoral , Neoplasias Ováricas/patología , Pronóstico
14.
Anticancer Agents Med Chem ; 24(6): 400-411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38192142

RESUMEN

BACKGROUND: Efficient targeted molecular therapeutics are needed for the treatment of triple-negative breast cancer (TNBC), a highly invasive and difficult-to-treat form of breast cancer associated with a poor prognosis. OBJECTIVES: This study aims to evaluate the potential of selective CDK4/6 inhibitors as a therapeutic option for TNBC by impairing the cell cycle G1 phase through the inhibition of retinoblastoma protein (Rb) phosphorylation. METHODS: In this study, we synthesized a compound called JHD205, derived from the chemical structure of Abemaciclib, and examined its inhibitory effects on the malignant characteristics of TNBC cells. RESULTS: Our results demonstrated that JHD205 exhibited superior tumor growth inhibition compared to Abemaciclib in breast cancer xenograft chicken embryo models. Western blot analysis revealed that JHD205 could dosedependently degrade CDK4 and CDK6 while also causing abnormal changes in other proteins associated with CDK4/6, such as p-Rb, Rb, and E2F1. Moreover, JHD205 induced apoptosis and DNA damage and inhibited DNA repair by upregulating Caspase3 and p-H2AX protein levels. CONCLUSION: Collectively, our findings suggest that JHD205 holds promise as a potential treatment for breast carcinoma.


Asunto(s)
Aminopiridinas , Antineoplásicos , Apoptosis , Bencimidazoles , Proliferación Celular , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Humanos , Bencimidazoles/farmacología , Bencimidazoles/química , Bencimidazoles/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Aminopiridinas/farmacología , Aminopiridinas/química , Aminopiridinas/síntesis química , Proliferación Celular/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Estructura Molecular , Femenino , Relación Estructura-Actividad , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Embrión de Pollo , Células Tumorales Cultivadas
15.
Oncogene ; 43(1): 61-75, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37950039

RESUMEN

The molecular mechanism of glioblastoma (GBM) radiation resistance remains poorly understood. The aim of this study was to elucidate the potential role of Melanophilin (MLPH) O-GlcNAcylation and the specific mechanism through which it regulates GBM radiotherapy resistance. We found that MLPH was significantly upregulated in recurrent GBM tumor tissues after ionizing radiation (IR). MLPH induced radiotherapy resistance in GBM cells and xenotransplanted human tumors through regulating the NF-κB pathway. MLPH was O-GlcNAcylated at the conserved serine 510, and radiation-resistant GBM cells showed higher levels of O-GlcNAcylation of MLPH. O-GlcNAcylation of MLPH protected its protein stability and tripartite motif containing 21(TRIM21) was identified as an E3 ubiquitin ligase promoting MLPH degradation whose interaction with MLPH was affected by O-GlcNAcylation. Our data demonstrate that MLPH exerts regulatory functions in GBM radiation resistance by promoting the NF-κB signaling pathway and that O-GlcNAcylation of MLPH both stabilizes and protects it from TRIM21-mediated ubiquitination. These results identify a potential mechanism of GBM radiation resistance and suggest a potential therapeutic strategy for GBM treatment.


Asunto(s)
Glioblastoma , FN-kappa B , Humanos , FN-kappa B/genética , Línea Celular Tumoral , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/patología , Recurrencia Local de Neoplasia , Ubiquitinación
16.
Chin J Traumatol ; 27(1): 18-26, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37423838

RESUMEN

PURPOSE: The incidence of heatstroke (HS) is not particularly high; however, once it occurs, the consequences are serious. It is reported that calcitonin gene-related peptide (CGRP) is protective against brain injury in HS rats, but detailed molecular mechanisms need to be further investigated. In this study, we further explored whether CGRP inhibited neuronal apoptosis in HS rats via protein kinase A (PKA)/p-cAMP response element-binding protein (p-CREB) pathway. METHODS: We established a HS rat model in a pre-warmed artificial climate chamber with a temperature of (35.5 ± 0.5) °C and a relative humidity of 60% ± 5%. Heatstress was stopped once core body temperature reaches above 41 °C. A total of 25 rats were randomly divided into 5 groups with 5 animals each: control group, HS group, HS+CGRP group, HS+CGRP antagonist (CGRP8-37) group, and HS+CGRP+PKA/p-CREB pathway blocker (H89) group. A bolus injection of CGRP was administered to each rat in HS+CGRP group, CGRP8-37 (antagonist of CGRP) in HS+CGRP8-37 group, and CGRP with H89 in HS+CGRP+H89 group. Electroencephalograms were recorded and the serum concentration of S100B, neuron-specific enolase (NSE), neuron apoptosis, activated caspase-3 and CGRP expression, as well as pathological morphology of brain tissue were detected at 2 h, 6 h, and 24 h after HS in vivo. The expression of PKA, p-CREB, and Bcl-2 in rat neurons were also detected at 2 h after HS in vitro. Exogenous CGRP, CGRP8-37, or H89 were used to determine whether CGRP plays a protective role in brain injury via PKA/p-CREB pathway. The unpaired t-test was used between the 2 samples, and the mean ± SD was used for multiple samples. Double-tailed p < 0.05 was considered statistically significant. RESULTS: Electroencephalogram showed significant alteration of θ (54.50 ± 11.51 vs. 31.30 ± 8.71, F = 6.790, p = 0.005) and α wave (16.60 ± 3.21 vs. 35.40 ± 11.28, F = 4.549, p = 0.020) in HS group compared to the control group 2 h after HS. The results of triphosphate gap terminal labeling (TUNEL) showed that the neuronal apoptosis of HS rats was increased in the cortex (9.67 ± 3.16 vs. 1.80 ± 1.10, F = 11.002, p = 0.001) and hippocampus (15.73 ± 8.92 vs. 2.00 ± 1.00, F = 4.089, p = 0.028), the expression of activated caspase-3 was increased in the cortex (61.76 ± 25.13 vs. 19.57 ± 17.88, F = 5.695, p = 0.009) and hippocampus (58.60 ± 23.30 vs. 17.80 ± 17.62, F = 4.628, p = 0.019); meanwhile the expression of serum NSE (5.77 ± 1.78 vs. 2.35 ± 0.56, F = 5.174, p = 0.013) and S100B (2.86 ± 0.69 vs. 1.35 ± 0.34, F = 10.982, p = 0.001) were increased significantly under HS. Exogenous CGRP decreased the concentrations of NSE and S100B, and activated the expression of caspase-3 (0.41 ± 0.09 vs. 0.23 ± 0.04, F = 32.387, p < 0.001) under HS; while CGRP8-37 increased NSE (3.99 ± 0.47 vs. 2.40 ± 0.50, F = 11.991, p = 0.000) and S100B (2.19 ± 0.43 vs. 1.42 ± 0.30, F = 4.078, p = 0.025), and activated the expression caspase-3 (0.79 ± 0.10 vs. 0.23 ± 0.04, F = 32.387, p < 0.001). For the cell experiment, CGRP increased Bcl-2 (2.01 ± 0.73 vs. 2.15 ± 0.74, F = 8.993, p < 0.001), PKA (0.88 ± 0.08 vs. 0.37 ± 0.14, F = 20.370, p < 0.001), and p-CREB (0.87 ± 0.13 vs. 0.29 ± 0.10, F = 16.759, p < 0.001) levels; while H89, a blocker of the PKA/p-CREB pathway reversed the expression. CONCLUSIONS: CGRP can protect against HS-induced neuron apoptosis via PKA/p-CREB pathway and reduce activation of caspase-3 by regulating Bcl-2. Thus CGRP may be a new target for the treatment of brain injury in HS.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Golpe de Calor , Isoquinolinas , Sulfonamidas , Animales , Ratas , Apoptosis , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Péptido Relacionado con Gen de Calcitonina/farmacología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Caspasa 3 , Proteínas Proto-Oncogénicas c-bcl-2 , Ratas Sprague-Dawley , Golpe de Calor/metabolismo , Golpe de Calor/patología
17.
Int J Biol Macromol ; 256(Pt 2): 128579, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38048931

RESUMEN

As a well-known natural and innocuous plant constituent, cellulose consists of abundant hydroxyl groups and can tightly adsorb onto material surfaces hydrogen bonding, resulting in a superhydrophilic surface. In this work, the hydrophobic polyvinylidene fluoride (PVDF) membranes were modified by immersing them in cellulose hydrogel using a simple one-step process. The modified PVDF membrane exhibited excellent resistance to fouling and oil adhesion, making it highly effective in separating various oil-in-water emulsions. The cellulose-modified PVDF membranes achieved a high oil rejection rate (>99 %) and a maximum separation flux of 2675.2 L·m-2·h-1. Furthermore, even an oil-in-water emulsion containing bovine serum albumin maintained a steady permeation flux after four filtration cycles. Additionally, these cellulose-modified PVDF membranes demonstrated excellent underwater superoleophobicity across a wide range of pH levels and high saline conditions. Overall, these cellulose-modified superhydrophilic PVDF membranes are sustainable, environmentally friendly, easily scalable, and hold great promise for practical applications in oily wastewater treatment.


Asunto(s)
Incrustaciones Biológicas , Celulosa , Polímeros de Fluorocarbono , Polivinilos , Celulosa/química , Emulsiones , Hidrogeles , Aceites
18.
Mol Cell Endocrinol ; 582: 112127, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109990

RESUMEN

The precise involvement and mechanistic role of the signal peptide-CUB-EGF-like domain-containing protein 3 (SCUBE3) in ovarian cancer (OV) remain poorly understood. Here, leveraging comprehensive data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we unveil the selective overexpression of SCUBE3 in ovarian cancer tissues and cells. Intriguingly, elevated SCUBE3 expression levels correlate with an unfavorable prognosis in patients. Through meticulous manipulation of SCUBE3 expression, we elucidate its consequential impact on in vitro proliferation and invasion of ovarian cancer cells, as well as in vivo tumor growth in mice. Our multifaceted investigations, encompassing luciferase reporter assays, chromatin immunoprecipitation (ChIP) experiments, and mining of public databases, successfully identify SCUBE3 as a direct downstream target gene of TCF4-a pivotal positive regulator within the ß-catenin/TCF4 complex. Furthermore, utilizing a recessive mutant mouse line (kta41) harboring a functionally impaired point mutation at position 882 in the SCUBE3 gene, we uncover SCUBE3's involvement in the intricate regulation of angiogenesis and epithelial-mesenchymal transition (EMT). Strikingly, Spearman correlation coefficient analysis unveils a close association between SCUBE3 and HIF1A in OV, with SCUBE3 exerting tight control over HIF1A mRNA expression. Moreover, functional inhibition of HIF1A significantly impedes the pro-proliferative and invasive capabilities of SCUBE3-overexpressing ovarian cancer cells. Collectively, our findings underscore the pivotal role of SCUBE3 in driving ovarian cancer progression, shedding light on its intricate molecular mechanisms and establishing it as a potential therapeutic target for this devastating disease.


Asunto(s)
Neoplasias Ováricas , beta Catenina , Humanos , Femenino , Ratones , Animales , beta Catenina/metabolismo , Regulación hacia Arriba/genética , Neoplasias Ováricas/genética , Transducción de Señal , Transición Epitelial-Mesenquimal/genética , Vía de Señalización Wnt , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo
19.
J Colloid Interface Sci ; 656: 146-154, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37989048

RESUMEN

The use of light-assisted cathode is regarded as an effective approach to reduce the overpotential of lithium carbon dioxide (Li - CO2) batteries. However, the inefficient electron-hole separation and the complex discharge-charge reactions hamper the efficiency of CO2 photocatalytic reaction in battery. Herein, a highly reversible force-assisted Li - CO2 battery has been established for the first time by employing a Bi0.5Na0.5TiO3 nanorods piezoelectric cathode. The high-energy electron and holes generated by the piezoelectric cathode with ultrasonic force can effectively enhance the carbon dioxide reduction reaction (CDRR) and carbon dioxide evolution reaction (CDER) kinetics, thereby reducing the overpotentials during the discharge-charge processes. Moreover, the morphology of the discharge product (Li2CO3) can be modified via the dense surface electrons of the piezoelectric cathode, resulting in the promoted decomposition kinetics of Li2CO3 in charging progress. Thus, the force-assisted Li - CO2 battery with the unique piezoelectric cathode can adjust the output and input energy by ultrasonic wave, and provides an ultra-low charging platform of 3.52 V, and exhibits excellent cycle stability (a charging platform of 3.42 V after 100 h cycles). The investigation of the force-assisted process described herein provides significant insights to solve overpotential in the Li - CO2 batteries system.

20.
J Neurooncol ; 166(1): 59-71, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38146046

RESUMEN

PURPOSE: Atypical meningiomas could manifest early recurrence after surgery and even adjuvant radiotherapy. We aimed to construct a clinico-radiomics model to predict post-operative recurrence of atypical meningiomas based on clinicopathological and radiomics features. MATERIALS AND METHODS: The study cohort was comprised of 224 patients from two neurosurgical centers. 164 patients from center I were divided to the training cohort for model development and the testing cohort for internal validation. 60 patients from center II were used for external validation. Clinicopathological characteristics, radiological semantic, and radiomics features were collected. A radiomic signature was comprised of four radiomics features. A clinico-radiomics model combining the radiomics signature and clinical characteristics was constructed to predict the recurrence of atypical meningiomas. RESULTS: 1920 radiomics features were extracted from the T1 Contrast and T2-FLAIR sequences of patients in center I. The radiomics signature was able to differentiate post-operative patients into low-risk and high-risk groups based on tumor recurrence (P < 0.001). A clinic-radiomics model was established by combining age, extent of resection, Ki-67 index, surgical history and the radiomics signature for recurrence prediction in atypical meningiomas. The model achieved a good prediction performance with the integrated AUC of 0.858 (0.802-0.915), 0.781 (0.649-0.912) and 0.840 (0.747-0.933) in the training, internal validation and external validation cohort, respectively. CONCLUSIONS: The present study established a radiomics signature and a clinico-radiomics model with a favorable performance in predicting tumor recurrence for atypical meningiomas.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico por imagen , Meningioma/cirugía , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/cirugía , Radiómica , Periodo Posoperatorio , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/cirugía , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA