Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Polymers (Basel) ; 15(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38139871

RESUMEN

This article introduces a one-step extrusion-based fused deposition modeling (FDM) approach for the challenging separation of polypropylene (PP) and polyethylene terephthalate (PET) during recycling. A shear screw printer (SSP) with shear elements was designed, and it was compared to a conventional single-screw printer (CSP) to investigate the differences in print stability, degradation levels, tensile performance, molecular orientation, and crystallization when preparing recycled PP and recycled PET blends. Although the retention effect of the SSP screw slightly increases the degradation of the blended rPP/rPET, the strong shear (2.6 × 104 s-1) applied near the extrusion exit improves the blending efficiency. The SSP also enhances molecular orientation, modulus of the parts, and reduces performance fluctuations. Additionally, the SSP has the potential to simplify the recycling process, enabling the transformation of blended recycled materials into products with just one melt process.

2.
Polymers (Basel) ; 12(1)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963104

RESUMEN

In this work, a series of isotactic polypropylene/poly(ethylene terephthalate) (iPP/PET) samples were prepared by microinjection molding (µIM) and mini-injection molding (IM). The properties of the samples were investigated in detail by differential scanning calorimetry (DSC), Wide-Angle X-ray Diffraction (WAXD), Polarized light microscope (PLM) and scanning electron microscopy (SEM). Results showed that the difference in thermomechanical history between both processing methods leads to the formation of different microstructures in corresponding iPP/PET moldings. For example, the dispersed spherical PET phase deforms and emerges into continuous in-situ microfibrils due to the intensive shearing flow field and temperature field in µIM. Additionally, the incorporation of PET facilitates both the laminar branching and the reservation of oriented molecular chains, thereby leading to forming a typical hybrid structure (i.e., fan-shaped ß-crystals and transcrystalline). Furthermore, more compact and higher degrees of oriented structure can be obtained via increasing the content of PET. Such hybrid structure leads to a remarkable enhancement of mechanical property in terms of µIM samples.

3.
Langmuir ; 29(44): 13509-17, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24070497

RESUMEN

Thermoplastic polyurethane (TPU)/polypropylene (PP) blends of different weight ratios were prepared with a self-made vane extruder (VE), which generates global dynamic elongational flow, and a traditional twin-screw extruder (TSE), which generates shear flow. High-resolution scanning electron microscopy and polarizing microscopy showed a structure feature of fiber morphology and a clear interlocking structure of spherulites of PP/TPU blends prepared with a VE. The wide-angle X-ray diffraction results showed that the TPU/PP blend based on dynamic elongational flow had evident crystalline structure of the ß form as a function of PP (90 wt %), compared to that of the conventional shear flow processing techniques. A significant improvement of the mechanical properties was obtained; the samples prepared with a VE had superior mechanical properties compared to those of the samples prepared with a TSE. Interestingly, differential scanning calorimetry curves showed that dynamic elongational flow could successfully improve the crystallinity of the PP/TPU blends. Furthermore, dynamic thermomechanical and thermogravimetric analysis curves revealed the apparent partial miscibility and strong interaction of the PP/TPU blends influenced by dynamic elongational flow, compared to that of TSE-extruded. Further research will provide significant understanding of the spherulite interface and high-performance manipulation of PP/TPU blends under dynamic elongational flow, achieving superior PP/TPU blends.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA