Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sci Adv ; 10(6): eadj2752, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38324677

RESUMEN

Exercise-induced activation of adenosine monophosphate-activated protein kinase (AMPK) and substrate phosphorylation modulate the metabolic capacity of mitochondria in skeletal muscle. However, the key effector(s) of AMPK and the regulatory mechanisms remain unclear. Here, we showed that AMPK phosphorylation of the folliculin interacting protein 1 (FNIP1) serine-220 (S220) controls mitochondrial function and muscle fuel utilization during exercise. Loss of FNIP1 in skeletal muscle resulted in increased mitochondrial content and augmented metabolic capacity, leading to enhanced exercise endurance in mice. Using skeletal muscle-specific nonphosphorylatable FNIP1 (S220A) and phosphomimic (S220D) transgenic mouse models as well as biochemical analysis in primary skeletal muscle cells, we demonstrated that exercise-induced FNIP1 (S220) phosphorylation by AMPK in muscle regulates mitochondrial electron transfer chain complex assembly, fuel utilization, and exercise performance without affecting mechanistic target of rapamycin complex 1-transcription factor EB signaling. Therefore, FNIP1 is a multifunctional AMPK effector for mitochondrial adaptation to exercise, implicating a mechanism for exercise tolerance in health and disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteínas Portadoras , Ratones , Animales , Fosforilación/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo
2.
Nat Commun ; 14(1): 7136, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932296

RESUMEN

Ischaemia of the heart and limbs attributable to compromised blood supply is a major cause of mortality and morbidity. The mechanisms of functional angiogenesis remain poorly understood, however. Here we show that FNIP1 plays a critical role in controlling skeletal muscle functional angiogenesis, a process pivotal for muscle revascularization during ischemia. Muscle FNIP1 expression is down-regulated by exercise. Genetic overexpression of FNIP1 in myofiber causes limited angiogenesis in mice, whereas its myofiber-specific ablation markedly promotes the formation of functional blood vessels. Interestingly, the increased muscle angiogenesis is independent of AMPK but due to enhanced macrophage recruitment in FNIP1-depleted muscles. Mechanistically, myofiber FNIP1 deficiency induces PGC-1α to activate chemokine gene transcription, thereby driving macrophage recruitment and muscle angiogenesis program. Furthermore, in a mouse hindlimb ischemia model of peripheral artery disease, the loss of myofiber FNIP1 significantly improved the recovery of blood flow. Thus, these results reveal a pivotal role of FNIP1 as a negative regulator of functional angiogenesis in muscle, offering insight into potential therapeutic strategies for ischemic diseases.


Asunto(s)
Macrófagos , Músculo Esquelético , Ratones , Animales , Ratones Noqueados , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Macrófagos/metabolismo , Modelos Animales de Enfermedad , Isquemia , Miembro Posterior/irrigación sanguínea , Neovascularización Fisiológica , Proteínas Portadoras/metabolismo
3.
Eur J Vasc Endovasc Surg ; 66(5): 707-721, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37295599

RESUMEN

OBJECTIVE: Diabetic wounds are a complication of diabetes mellitus, which is characterised by microcirculation dysfunction caused by decreased local blood supply and insufficient metabolic exchange. Clinically, in addition to glycaemic control, the most important treatment for diabetic wounds is to promote local angiogenesis, which accelerates wound healing. The authors previous study demonstrated that CD93, which is specifically expressed on vascular endothelial cells (ECs), redundantly regulates angiogenesis in zebrafish, suggesting that CD93 is a potential angiogenic molecule. However, the role of CD93 in diabetic wounds has not yet been elucidated. METHODS: The angiogenic effects of CD93 were studied from four aspects: exogenous, endogenous, in vitro, and in vivo. CD93 recombinant protein was used in microvascular ECs and in mice to observe angiogenesis in vitro and in vivo. The wound model was established in CD93-/- and wild type diabetic mice, and the degree of wound healing as well as the amount and maturity of neovascularisation were investigated. The possible mechanism of CD93 in angiogenesis was determined by CD93 overexpression in cultured ECs. RESULTS: CD93 recombinant protein was found to exogenously promote tube formation and sprouting of ECs. It also recruited cells to promote the formation of vascular like structures in subcutaneous tissue and accelerated wound healing by optimising angiogenesis and re-epithelisation. Furthermore, CD93 deficiency was observed to delay wound repair, characterised by reduced neovascularisation, vascular maturity, and re-epithelisation level. Mechanically, CD93 activated the p38MAPK/MK2/HSP27 signalling pathway, positively affecting the angiogenic functions of ECs. CONCLUSION: This study demonstrated that CD93 promotes angiogenesis both in vitro and in vivo and that its angiogenic role in vitro is mediated by the p38MAPK/MK2/HSP27 signalling pathway. It was also found that CD93 exerts beneficial effects on wound healing in diabetic mice by promoting angiogenesis and re-epithelisation.


Asunto(s)
Diabetes Mellitus Experimental , Proteínas de Choque Térmico HSP27 , Animales , Ratones , Diabetes Mellitus Experimental/complicaciones , Células Endoteliales , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/farmacología , Neovascularización Patológica , Neovascularización Fisiológica , Proteínas Recombinantes/farmacología , Pez Cebra , Proteína Quinasa 14 Activada por Mitógenos
4.
Nat Commun ; 13(1): 894, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173176

RESUMEN

Mitochondrial proteolysis is an evolutionarily conserved quality-control mechanism to maintain proper mitochondrial integrity and function. However, the physiological relevance of stress-induced impaired mitochondrial protein quality remains unclear. Here, we demonstrate that LONP1, a major mitochondrial protease resides in the matrix, plays a role in controlling mitochondrial function as well as skeletal muscle mass and strength in response to muscle disuse. In humans and mice, disuse-related muscle loss is associated with decreased mitochondrial LONP1 protein. Skeletal muscle-specific ablation of LONP1 in mice resulted in impaired mitochondrial protein turnover, leading to mitochondrial dysfunction. This caused reduced muscle fiber size and strength. Mechanistically, aberrant accumulation of mitochondrial-retained protein in muscle upon loss of LONP1 induces the activation of autophagy-lysosome degradation program of muscle loss. Overexpressing a mitochondrial-retained mutant ornithine transcarbamylase (ΔOTC), a known protein degraded by LONP1, in skeletal muscle induces mitochondrial dysfunction, autophagy activation, and cause muscle loss and weakness. Thus, these findings reveal a role of LONP1-dependent mitochondrial protein quality-control in safeguarding mitochondrial function and preserving skeletal muscle mass and strength, and unravel a link between mitochondrial protein quality and muscle mass maintenance during muscle disuse.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/patología , Proteasas ATP-Dependientes/genética , Animales , Autofagia/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Fuerza Muscular/fisiología , Ornitina Carbamoiltransferasa/metabolismo , Proteolisis , Proteostasis/fisiología
5.
BMC Oral Health ; 21(1): 141, 2021 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-33743656

RESUMEN

BACKGROUND: Streptococcus anginosus (S. anginosus) was reported increased in oral squamous cell carcinoma (OSCC) tissue. The aim of this study was to investigate the response of oral cancer cells in the biological characteristics evoked by the S. anginosus and investigate its potential mechanisms. METHODS: The growth curve and concentration standard curve of S. anginosus were determined, and a series of concentrations of S. anginosus supernatant were applied to OSCC cell lines SCC15, then selected an optimal time and concentration by CCK-8 assay. Then autophagic response, proliferative activity, cell cycle and apoptosis, invasion and migration abilities were evaluated in SCC15. RESULTS: The results showed that when the ratio of S. anginosus supernatant to cell culture medium was 1:1 and the co-culture time was 16 h, the inhibitory effect on SCC15 was the most obvious; Furthermore, the supernatant of Streptococcus upregulated the autophagy activity of SCC15, thus significantly inhibiting its proliferation, migration and invasion ability. Compared with control groups, the cell cycle showed G1 arrest, S and G2/M phases decreased, and the percentage of apoptotic cells relatively increased (P < 0.05). CONCLUSION: S. anginosus reduced the proliferation, migration and invasion of SCC15 cells and promoted cell apoptosis; Moreover, autophagy may be one of the mechanisms in this process.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Neoplasias de la Lengua , Línea Celular Tumoral , Proliferación Celular , Humanos , Streptococcus anginosus , Lengua
6.
Planta ; 250(1): 381-390, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31062160

RESUMEN

MAIN CONCLUSION: Ethylene receptor is crucial for PCD and aerenchyma formation in Typha angustifolia leaves. Not only does it receive and deliver the ethylene signal, but it probably can determine the cell fate during aerenchyma morphogenesis, which is due to the receptor expression quantity. Aquatic plant oxygen delivery relies on aerenchyma, which is formed by a programmed cell death (PCD) procedure. However, cells in the outer edge of the aerenchyma (palisade cells and septum cells) remain intact, and the mechanism is unclear. Here, we offer a hypothesis: cells that have a higher content of ethylene receptors do not undergo PCD. In this study, we investigated the leaf aerenchyma of the aquatic plant Typha angustifolia. Ethephon and pyrazinamide (PZA, an inhibitor of ACC oxidase) were used to confirm that ethylene is an essential hormone for PCD of leaf aerenchyma cells in T. angustifolia. That the ethylene receptor was an indispensable factor in this PCD was confirmed by 1-MCP (an inhibitor of the ethylene receptor) treatment. Although PCD can be avoided by blocking the ethylene receptor, excessive ethylene receptors also protect cells from PCD. TaETR1, TaETR2 and TaEIN4 in the T. angustifolia leaf were detected by immunofluorescence (IF) using polyclonal antibodies. The result showed that the content of ethylene receptors in PCD-unsusceptible cells was 4-14 times higher than that one in PCD-susceptible cells, suggesting that PCD-susceptible cells undergo the PCD programme, while PCD-unsusceptible cells do not due to the content difference in the ethylene receptor in different cells. A higher level of ethylene receptor content makes the cells insensitive to ethylene, thereby avoiding cell death and degradation.


Asunto(s)
Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Typhaceae/fisiología , Aminoácido Oxidorreductasas/antagonistas & inhibidores , Apoptosis/genética , Diferenciación Celular/genética , Ciclopropanos/farmacología , Etilenos/metabolismo , Compuestos Organofosforados/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Pirazinamida/farmacología , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/genética , Typhaceae/efectos de los fármacos , Typhaceae/enzimología , Typhaceae/crecimiento & desarrollo
7.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 32(3): 297-302, 2014 Jun.
Artículo en Chino | MEDLINE | ID: mdl-25033650

RESUMEN

OBJECTIVE: To explore the relationship between salivary proteome and dental caries and to promote the biomarker studies of dental caries susceptibility by comparing the salivary proteome of caries-active children and caries-free children with electrospray ionization ion-trap tandem mass spectrometry (ESI-MS/MS). METHODS: Ten caries-active children and ten caries-free children were sampled. The salivary proteome of the two groups was studied, and the differential protein between the two groups was analyzed by ESI-MS/MS after sodium dodecyl sulfate polyacrylamide gel electrophoresis, filter-aided sample preparation, and liquid chromatography. RESULTS: The concentration of salivary protein was higher in the caries-active group than in the caries-free group. The polypeptide counts of thecaries-active and caries-free groups were 602 and 481, which belonged to 286 and 227 proteins, respectively. The differential polypeptide count of the two groups was 361, and the differential protein count was 118. The detected proteins included matrix metalloproteinase-9 (MMP9), mucin-7 (MUC7), lactotransferrin (LTF), carbonic anhydrase 6 (CA6), azurocidin (AZU), and cold agglutinin. CONCLUSION: The total salivary protein was higher in the caries-active group than in the caries-free group. The preliminary detection of differential proteins (MMP9, MUC7, LTF, CA6, AZU, and cold agglutinin) may lay some foundation for biomarker research of dental caries susceptibility.


Asunto(s)
Caries Dental , Proteoma , Anhidrasas Carbónicas , Niño , Humanos , Metaloproteinasa 9 de la Matriz , Saliva/química , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA