Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cancer Res ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718305

RESUMEN

Peripheral T cell lymphoma (PTCL) is a heterogeneous and aggressive disease with a poor prognosis. Histone deacetylase (HDAC) inhibitors have shown inhibitory effects on PTCL. A better understanding of the therapeutic mechanism underlying the effects of HDAC inhibitors could help improve treatment strategies. Here, we found that high expression of HDAC3 is associated with poor prognosis in PTCL. HDAC3 inhibition suppressed lymphoma growth in immunocompetent mice but not in immunodeficient mice. HDAC3 deletion delayed the progression of lymphoma, reduced the lymphoma burden in the thymus, spleen, and lymph nodes, and prolonged the survival of mice bearing MNU-induced lymphoma. Furthermore, inhibiting HDAC3 promoted the infiltration and enhanced the function of natural killer (NK) cells. Mechanistically, HDAC3 mediated ATF3 deacetylation, enhancing its transcriptional inhibitory activity. Targeting HDAC3 enhanced CXCL12 secretion through an ATF3-dependent pathway to stimulate NK cell recruitment and activation. Finally, HDAC3 suppression improved the response of PTCL to conventional chemotherapy. Collectively, this study provides insights into the mechanism by which HDAC3 regulates ATF3 activity and CXCL12 secretion, leading to immune infiltration and lymphoma suppression. Combining HDAC3 inhibitors with chemotherapy may be a promising strategy for treating PTCL. Key words: Histone deacetylases (HDACs), Natural killer (NK) cells, Peripheral T cell lymphoma (PTCL).

2.
Artículo en Inglés | MEDLINE | ID: mdl-38441247

RESUMEN

CONTEXT: TERT promoter mutated thyroid cancers are associated with a decreased rate of disease free and disease specific survival. High quality analytical validation of a diagnostic test promotes confidence in the results which inform clinical decision making. OBJECTIVE: To demonstrate the analytical validation of the Afirma TERT promoter mutation assay. METHODS: TERT promoter C228T and C250T variant detection in genomic DNA (gDNA) was analyzed by assessing variable DNA input and the limit of detection (LOD) of variant allele frequency (VAF). The negative and positive percent agreement (NPA and PPA) of the Afirma TERT test was examined against a reference primer pair as was the analytical specificity from potential interfering substances (RNA and blood gDNA). Further, the intra-run, inter-run and inter-laboratory reproducibility of the assay were tested. RESULTS: The Afirma TERT test is tolerant to variation in DNA input amount (7-13 ng) and can detect expected positive TERT promoter variants down to 5% VAF LOD at 7ng DNA input with > 95% sensitivity. Both NPA and PPA were 100% against the reference primer pair. The test remains accurate in presence of 20% RNA or 80% blood gDNA for an average patient sample that typically has 30% VAF. The test also demonstrated a 100% confirmation rate when compared with an external NGS-based reference assay executed in a non-Veracyte laboratory. CONCLUSION: The analytical robustness and reproducibility of the Afirma TERT test support its routine clinical use among thyroid nodules with indeterminate cytology that are Afirma GSC suspicious or among Bethesda V/VI nodules.

3.
Biochem Biophys Res Commun ; 693: 149366, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38091842

RESUMEN

INTRODUCTION: Celastrol is an active pentacyclic triterpenoid extracted from Tripterygium wilfordii and has anti-inflammatory and anti-tumor properties. Whether Celastrol modulates platelet function remains unknown. Our study investigated its role in platelet function and thrombosis. METHODS: Human platelets were isolated and incubated with Celastrol (0, 1, 3 and 5 µM) at 37 °C for 1 h to measure platelet aggregation, granules release, spreading, thrombin-induced clot retraction and intracellular calcium mobilization. Additionally, Celastrol (2 mg/kg) was intraperitoneally administrated into mice to evaluate hemostasis and thrombosis in vivo. RESULTS: Celastrol treatment significantly decreased platelet aggregation and secretion of dense or alpha granules induced by collagen-related peptide (CRP) or thrombin in a dose-dependent manner. Additionally, Celastrol-treated platelets showed a dramatically reduced spreading activity and decreased clot retraction. Moreover, Celastrol administration prolonged tail bleeding time and inhibited formation of arterial/venous thrombosis. Furthermore, Celastrol significantly reduced calcium mobilization. CONCLUSION: Celastrol inhibits platelet function and venous/arterial thrombosis, implying that it might be utilized for treating thrombotic diseases.


Asunto(s)
Activación Plaquetaria , Trombosis , Humanos , Animales , Ratones , Calcio/metabolismo , Trombina/metabolismo , Hemostasis , Agregación Plaquetaria , Plaquetas/metabolismo , Triterpenos Pentacíclicos , Trombosis/metabolismo
4.
Hepatology ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38051951

RESUMEN

BACKGROUND AND AIMS: Cross talk between tumor cells and immune cells enables tumor cells to escape immune surveillance and dictate responses to immunotherapy. Previous studies have identified that downregulation of the glycolytic enzyme fructose-1,6-bisphosphate aldolase B (ALDOB) in tumor cells orchestrated metabolic programming to favor HCC. However, it remains elusive whether and how ALDOB expression in tumor cells affects the tumor microenvironment in HCC. APPROACH AND RESULTS: We found that ALDOB downregulation was negatively correlated with CD8 + T cell infiltration in human HCC tumor tissues but in a state of exhaustion. Similar observations were made in mice with liver-specific ALDOB knockout or in subcutaneous tumor models with ALDOB knockdown. Moreover, ALDOB deficiency in tumor cells upregulates TGF-ß expression, thereby increasing the number of Treg cells and impairing the activity of CD8 + T cells. Consistently, a combination of low ALDOB and high TGF-ß expression exhibited the worst overall survival for patients with HCC. More importantly, the simultaneous blocking of TGF-ß and programmed cell death (PD) 1 with antibodies additively inhibited tumorigenesis induced by ALDOB deficiency in mice. Further mechanistic experiments demonstrated that ALDOB enters the nucleus and interacts with lysine acetyltransferase 2A, leading to inhibition of H3K9 acetylation and thereby suppressing TGFB1 transcription. Consistently, inhibition of lysine acetyltransferase 2A activity by small molecule inhibitors suppressed TGF-ß and HCC. CONCLUSIONS: Our study has revealed a novel mechanism by which a metabolic enzyme in tumor cells epigenetically modulates TGF-ß signaling, thereby enabling cancer cells to evade immune surveillance and affect their response to immunotherapy.

5.
Front Immunol ; 14: 1231937, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908345

RESUMEN

Nephrotic syndrome (NS) is a relatively rare and serious presentation of IgA nephropathy (IgAN) (NS-IgAN). Previous research has suggested that the pathogenesis of NS-IgAN may involve circulating immune imbalance and kidney injury; however, this has yet to be fully elucidated. To investigate the cellular and molecular status of NS-IgAN, we performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) and kidney cells from pediatric patients diagnosed with NS-IgAN by renal biopsy. Consistently, the proportion of intermediate monocytes (IMs) in NS-IgAN patients was higher than in healthy controls. Furthermore, flow cytometry confirmed that IMs were significantly increased in pediatric patients with NS. The characteristic expression of VSIG4 and MHC class II molecules and an increase in oxidative phosphorylation may be important features of IMs in NS-IgAN. Notably, we found that the expression level of CCR2 was significantly increased in the CMs, IMs, and NCMs of patients with NS-IgAN. This may be related to kidney injury. Regulatory T cells (Tregs) are classified into two subsets of cells: Treg1 (CCR7 high, TCF7 high, and HLA-DR low) and Treg2 (CCR7 low, TCF7 low, and HLA-DR high). We found that the levels of Treg2 cells expressed significant levels of CCR4 and GATA3, which may be related to the recovery of kidney injury. The state of NS in patients was closely related to podocyte injury. The expression levels of CCL2, PRSS23, and genes related to epithelial-mesenchymal transition were significantly increased in podocytes from NS-IgAN patients. These represent key features of podocyte injury. Our analysis suggests that PTGDS is significantly downregulated following injury and may represent a new marker for podocytes. In this study, we systematically analyzed molecular events in the circulatory system and kidney tissue of pediatric patients with NS-IgAN, which provides new insights for targeted therapy in the future.


Asunto(s)
Glomerulonefritis por IGA , Síndrome Nefrótico , Humanos , Niño , Glomerulonefritis por IGA/patología , Síndrome Nefrótico/etiología , Leucocitos Mononucleares/metabolismo , Receptores CCR7 , Riñón/patología , Antígenos HLA-DR
6.
Nat Commun ; 14(1): 5917, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37739936

RESUMEN

CSCs (Cancer stem cells) with distinct metabolic features are considered to cause HCC (hepatocellular carcinoma) initiation, metastasis and therapeutic resistance. Here, we perform a metabolic gene CRISPR/Cas9 knockout library screen in tumorspheres derived from HCC cells and find that deletion of SCARB2 suppresses the cancer stem cell-like properties of HCC cells. Knockout of Scarb2 in hepatocytes attenuates HCC initiation and progression in both MYC-driven and DEN (diethylnitrosamine)-induced HCC mouse models. Mechanistically, binding of SCARB2 with MYC promotes MYC acetylation by interfering with HDCA3-mediated MYC deacetylation on lysine 148 and subsequently enhances MYC transcriptional activity. Screening of a database of FDA (Food and Drug Administration)-approved drugs shows Polymyxin B displays high binding affinity for SCARB2 protein, disrupts the SCARB2-MYC interaction, decreases MYC activity, and reduces the tumor burden. Our study identifies SCARB2 as a functional driver of HCC and suggests Polymyxin B-based treatment as a targeted therapeutic option for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Células Madre Neoplásicas , Polimixina B , Humanos
7.
ACS Chem Neurosci ; 14(13): 2425-2442, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37339428

RESUMEN

Neuropeptides with the C-terminal Wamide (Trp-NH2) are one of the last common ancestors of peptide families of eumetazoans and play various physiological roles. In this study, we sought to characterize the ancient Wamide peptides signaling systems in the marine mollusk Aplysia californica, i.e., APGWamide (APGWa) and myoinhibitory peptide (MIP)/Allatostatin B (AST-B) signaling systems. A common feature of protostome APGWa and MIP/AST-B peptides is the presence of a conserved Wamide motif in the C-terminus. Although orthologs of the APGWa and MIP signaling systems have been studied to various extents in annelids or other protostomes, no complete signaling systems have yet been characterized in mollusks. Here, through bioinformatics, molecular and cellular biology, we identified three receptors for APGWa, namely, APGWa-R1, APGWa-R2, and APGWa-R3. The EC50 values for APGWa-R1, APGWa-R2, and APGWa-R3 are 45, 2100, and 2600 nM, respectively. For the MIP signaling system, we predicted 13 forms of peptides, i.e., MIP1-13 that could be generated from the precursor identified in our study, with MIP5 (WKQMAVWa) having the largest number of copies (4 copies). Then, a complete MIP receptor (MIPR) was identified and the MIP1-13 peptides activated the MIPR in a dose-dependent manner, with EC50 values ranging from 40 to 3000 nM. Peptide analogs with alanine substitution experiments demonstrated that the Wamide motif at the C-terminus is necessary for receptor activity in both the APGWa and MIP systems. Moreover, cross-activity between the two signaling systems showed that MIP1, 4, 7, and 8 ligands could activate APGWa-R1 with a low potency (EC50 values: 2800-22,000 nM), which further supported that the APGWa and MIP signaling systems are somewhat related. In summary, our successful characterization of Aplysia APGWa and MIP signaling systems represents the first example in mollusks and provides an important basis for further functional studies in this and other protostome species. Moreover, this study may be useful for elucidating and clarifying the evolutionary relationship between the two Wamide signaling systems (i.e., APGWa and MIP systems) and their other extended neuropeptide signaling systems.


Asunto(s)
Aplysia , Neuropéptidos , Animales , Secuencia de Aminoácidos , Moluscos , Péptidos
8.
J Cereb Blood Flow Metab ; 43(11): 1857-1872, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37309740

RESUMEN

Vascular cognitive impairment (VCI) represents the second most common cause of dementia after Alzheimer's disease, and pathological changes in cerebral vascular structure and function are pivotal causes of VCI. Cognitive impairment caused by arterial ischemia has been extensively studied the whole time; the influence of cerebral venous congestion on cognitive impairment draws doctors' attention in recent clinical practice, but the underlying neuropathophysiological alterations are not completely understood. This study elucidated the specific pathogenetic role of cerebral venous congestion in cognitive-behavioral deterioration and possible electrophysiological mechanisms. Using cerebral venous congestion rat models, we found these rats exhibited decreased long-term potentiation (LTP) in the hippocampal dentate gyrus and impaired spatial learning and memory. Based on untargeted metabolomics, N-acetyl-L-cysteine (NAC) deficiency was detected in cerebral venous congestion rats; supplementation with NAC appeared to ameliorate synaptic deficits, rescue impaired LTP, and mitigate cognitive impairment. In a cohort of cerebral venous congestion patients, NAC levels were decreased; NAC concentration was negatively correlated with subjective cognitive decline (SCD) score but positively correlated with mini-mental state examination (MMSE) score. These findings provide a new perspective on cognitive impairment and support further exploration of NAC as a therapeutic target for the prevention and treatment of VCI.


Asunto(s)
Disfunción Cognitiva , Demencia Vascular , Hiperemia , Humanos , Ratas , Animales , Demencia Vascular/patología , Encéfalo/patología , Cognición
9.
Anal Chem ; 95(23): 8932-8938, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37256919

RESUMEN

The aberrantly changed level of homocysteine (Hcy) triggers a variety of pathological symptoms and subsequently Hcy-related diseases. Direct and selective visualization of Hcy in biological systems is pivotal to understanding the pathological functions of Hcy at the molecular level. Herein, a general strategy was developed for the specific fluorescence imaging of Hcy through the combination of dual-binding sites and the introduction of a nitro group at the 6-position of the 7-diethylaminocoumarin fluorophore. Also, a series of novel fluorescent probes were exploited for monitoring Hcy with excellent selectivity, high sensitivity, and far-red/near-infrared fluorescence emission. Furthermore, fluorescence imaging of endogenous Hcy dynamics in living cells and in vivo was achieved, providing direct and solid evidence for the increasement of endogenous Hcy in type 2 diabetes mellitus and Alzheimer's disease. This research will greatly advance the development and understanding of the molecular nexus between the Hcy metabolism cascade and the root causes of diseases related to Hcy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Cisteína/química , Células HeLa , Imagen Óptica , Colorantes Fluorescentes/química
10.
Front Pharmacol ; 14: 1132066, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37021048

RESUMEN

The vasopressin/oxytocin signaling system is present in both protostomes and deuterostomes and plays various physiological roles. Although there were reports for both vasopressin-like peptides and receptors in mollusc Lymnaea and Octopus, no precursor or receptors have been described in mollusc Aplysia. Here, through bioinformatics, molecular and cellular biology, we identified both the precursor and two receptors for Aplysia vasopressin-like peptide, which we named Aplysia vasotocin (apVT). The precursor provides evidence for the exact sequence of apVT, which is identical to conopressin G from cone snail venom, and contains 9 amino acids, with two cysteines at position 1 and 6, similar to nearly all vasopressin-like peptides. Through inositol monophosphate (IP1) accumulation assay, we demonstrated that two of the three putative receptors we cloned from Aplysia cDNA are true receptors for apVT. We named the two receptors as apVTR1 and apVTR2. We then determined the roles of post-translational modifications (PTMs) of apVT, i.e., the disulfide bond between two cysteines and the C-terminal amidation on receptor activity. Both the disulfide bond and amidation were critical for the activation of the two receptors. Cross-activity with conopressin S, annetocin from an annelid, and vertebrate oxytocin showed that although all three ligands can activate both receptors, the potency of these peptides differed depending on their residue variations from apVT. We, therefore, tested the roles of each residue through alanine substitution and found that each substitution could reduce the potency of the peptide analog, and substitution of the residues within the disulfide bond tended to have a larger impact on receptor activity than the substitution of those outside the bond. Moreover, the two receptors had different sensitivities to the PTMs and single residue substitutions. Thus, we have characterized the Aplysia vasotocin signaling system and showed how the PTMs and individual residues in the ligand contributed to receptor activity.

11.
Food Funct ; 14(2): 1238-1247, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36625098

RESUMEN

Global warming makes humans and animals more vulnerable to heat stress. Heat stress can cause multiorgan dysfunction, especially in the intestine, primarily via oxidative stress and inflammation. Mogroside-rich extract (MGE) is the active ingredient of Siraitia grosvenorii and has significant antioxidant and anti-inflammatory activity. However, whether MGE can alleviate the intestinal damage caused by heat stress has not been explored. In this study, mice were given 600 mg kg-1 MGE followed by exposure to high temperature (40 °C for 2 h per day), and the structures and molecular changes in the ileum were examined. Our findings showed that body weight was decreased by heat stress, while the activity of serum superoxide dismutase (SOD) was increased. We further found that heat stress impaired the intestinal barrier by reducing the number of goblet cells and mRNA levels of the tight junction proteins zona occludens protein 1 (ZO-1), Occludin (OCLD) and recombinant mucin 2 (MUC2 mucin), but it increased the mRNA level of trefoil factor 3 (TFF3). Interestingly, MGE treatment reversed these changes. Furthermore, heat stress increased the activity of SOD in the intestine, downregulated the expression of the oxidative stress-related genes glutathione peroxidase 1 (GPX1), SOD2 and nuclear factor erythroid 2-related factor 2 (NRF2), and upregulated the expression of catalase (CAT). Moreover, heat stress increased tumor necrosis factor-α (TNF-α) levels in the intestine and upregulated the expression of the inflammation-related genes interleukin 10 (IL-10), TNF-α, Interferon-γ (IFN-γ), toll like receptor 4 (TLR4) and nuclear factor-kappa B (NF-kB). However, MGE treatment effectively reduced TNF-α levels and restored the normal activity of SOD and normal mRNA levels for both oxidative stress-related and inflammation-related genes. In summary, our results showed that MGE can protect against heat stress-induced intestinal damage by ameliorating inflammation and oxidative stress.


Asunto(s)
Frutas , Factor de Necrosis Tumoral alfa , Humanos , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Frutas/metabolismo , Intestinos , Estrés Oxidativo , Inflamación , FN-kappa B/metabolismo , Superóxido Dismutasa/metabolismo , ARN Mensajero/metabolismo , Respuesta al Choque Térmico
12.
Asian J Surg ; 46(4): 1556-1563, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36089437

RESUMEN

BACKGROUND: This study aimed to identify preoperative and postoperative risk factors of venous thromboembolism (VTE) after gastrectomy in gastric cancer (GC) patients. METHODS: 757 GC patients underwent gastrectomy at our institution and 246 patients with elevated postoperative D-dimer levels who received Doppler ultrasonography of lower/upper extremity veins were enrolled. Clinicopathological factors data were collected, and the differences in clinicopathological factors between postoperative VTE (+) and VTE (-) groups were analyzed. Univariate and multivariate logistic regression analyses were performed to identify independent risk factors of postgastrectomy VTE. RESULTS: Of 246 patients with elevated postgastrectomy D-dimer concentrations, 74 patients showed thrombosis in lower/upper extremity veins. Among preoperative factors, age, WBC level, D-dimer concentration, and blood glucose level were significantly higher in the postoperative VTE (+) group. Among the postoperative factors, hemoglobin level was significantly lower in the postoperative VTE (+) group. Among the pathological factors, tumor stage, depth of invasion and TNM classification indicated higher malignancy in the postoperative VTE (+) group. Univariate logistic regression analysis indicated age, preoperative blood glucose level, postoperative hemoglobin level, tumor stage, depth of invasion, and TNM classification as the independent risk factors for postgastrectomy VTE, whereas multivariate logistic regression analysis revealed age and tumor stage as independent risk factors for postgastrectomy VTE. CONCLUSION: Our study revealed that age, preoperative blood glucose level, postoperative anemia, and tumor malignancy were independent risk factors for GC patients exhibiting postgastrectomy VTE. Therefore, the perioperative monitoring, assessment and management of risk factors are important in achieving better outcomes after gastrectomy.


Asunto(s)
Neoplasias Gástricas , Tromboembolia Venosa , Humanos , Tromboembolia Venosa/epidemiología , Tromboembolia Venosa/etiología , Estudios Retrospectivos , Neoplasias Gástricas/cirugía , Neoplasias Gástricas/complicaciones , Glucemia , Factores de Riesgo , Hemoglobinas , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología
13.
Cell Biosci ; 12(1): 202, 2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36528776

RESUMEN

In the aging process and central nervous system (CNS) diseases, the functions of the meningeal lymphatic vessels (MLVs) are impaired. Alterations in MLVs have been observed in aging-related neurodegenerative diseases, brain tumors, and even cerebrovascular disease. These findings reveal a new perspective on aging and CNS disorders and provide a promising therapeutic target. Additionally, recent neuropathological studies have shown that MLVs exchange soluble components between the cerebrospinal fluid (CSF) and interstitial fluid (ISF) and drain metabolites, cellular debris, misfolded proteins, and immune cells from the CSF into the deep cervical lymph nodes (dCLNs), directly connecting the brain with the peripheral circulation. Impairment and dysfunction of meningeal lymphatics can lead to the accumulation of toxic proteins in the brain, exacerbating the progression of neurological disorders. However, for many CNS diseases, the causal relationship between MLVs and neuropathological changes is not fully clear. Here, after a brief historical retrospection, we review recent discoveries about the hallmarks of MLVs and their roles in the aging and CNS diseases, as well as potential therapeutic targets for the treatment of neurologic diseases.

14.
Nanoscale ; 14(41): 15451-15461, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36226462

RESUMEN

Persistent luminescence nanoparticles (PLNPs) possess advantages for high-sensitivity bioimaging and continuous photodynamic therapy (PDT) because they can emit persistent luminescence (PerL) after excitation ceases. However, PLNPs are limited to single-wavelength emission, which can only efficiently realize one of the functions of bioimaging or PDT. In addition, most PLNPs are excited by shallow tissue penetrating excitation light, which makes it difficult to achieve repeatable in vivo applications with high efficiency. Herein, X-ray-excited PLNPs (Zn3Ga2Ge2O10:Cr3+,Mn2+, ZGGCM) with dual emission for in vivo X-rays repeatedly activated PerL imaging and tumor PDT are reported for the first time. ZGGCM exhibits dual-emission peaks after X-ray excitation/re-excitation, located at 698 nm and 532 nm, respectively. Additionally, ZGGCM is modified with the photosensitizer rose bengal (RB) to construct a dual-functional nanoplatform based on PerL imaging and PDT. The results indicate that the PerL emission peak (698 nm) of Cr3+ ions in ZGGCM possesses excellent near-infrared (NIR) PerL imaging performance, and the green PerL emission peak (532 nm) of Mn2+ ions can activate RB effectively and generate reactive oxygen species (ROS), thereby causing a significant antitumor effect. This unique dual-functional nanoplatform is expected to further promote the application of PLNPs in the integration of efficient tumor diagnosis and treatment.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Luminiscencia , Rayos X , Nanopartículas/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
15.
Eur J Med Chem ; 241: 114611, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-35939993

RESUMEN

Developing Bruton's tyrosine kinase (BTK) inhibitors has become a significant focus in recent years because BTK inhibition is an effective approach for the treatment of B-cell malignancies. For covalent BTK inhibitors, low oral bioavailability and low kinase selectivity remain unaddressed issues; thus, more diverse inhibitors with both novel structures and selective on target binding profiles are still needed. Here, four key regions where inhibitors bind to BTK were identified by analyzing the existing crystal structures of BTK complexes. Then, a scaffold-based molecular design work flow was established by integrating fragment-growing method, deep learning-based framework XGraphBoost and molecular docking, leading to four compounds that showed potency against BTK. Optimization of compounds 1 and 2 led to the discovery of the potent BTK inhibitor compound 42 by using in vitro potency and pharmacokinetic (PK) studies to prioritize the compounds. Compound 42 exhibited great BTK inhibition activity (IC50 = 0.7 nM) along with high oral absorption. Moreover, 42 demonstrated excellent kinase selectivity, especially over EGFR kinase, and low toxicity. In a TMD8 xenograft model, 42 significantly inhibited tumor growth (TGI = 104%) at a dosage of 50 mg/kg, indicating its potential as a novel therapeutic option for B-cell lymphomas.


Asunto(s)
Inhibidores de Proteínas Quinasas , Agammaglobulinemia Tirosina Quinasa , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Pirimidinas , Pirroles , Relación Estructura-Actividad
16.
J Med Chem ; 65(11): 8011-8028, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35609190

RESUMEN

Phosphoinositide 3-kinase δ (PI3Kδ) plays a critical role in B lymphocyte (B-cell) development and activation and has been a validated target for the treatment of B-cell malignancies. Herein, we report a series of thienopyrimidine derivatives as novel potent and selective PI3Kδ inhibitors based on a scaffold hopping design strategy. Among them, compound 6 exhibited nanomolar PI3Kδ potency and a favorable selectivity profile compared to other class I PI3K isoforms. In cellular assays, compound 6 showed antiproliferative activity against a panel of B-cell lymphoma cell lines in a low micromolar range, caused cell cycle arrest, and induced apoptosis in Pfeiffer and SU-DHL-6 cells. Further, compound 6 inhibited the activation of mouse B-cells. With support from in vivo pharmacokinetic studies, compound 6 demonstrated significant anticancer efficacy in a Pfeiffer xenograft mouse model. Overall, compound 6 is a promising PI3Kδ inhibitor worthy of further preclinical investigation for the treatment of B-cell malignancies.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Linfocitos B/metabolismo , Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase I , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas
17.
Cell Death Dis ; 13(3): 206, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246504

RESUMEN

Aerobic glycolysis (the Warburg effect) has been demonstrated to facilitate tumor progression by producing lactate, which has important roles as a proinflammatory and immunosuppressive mediator. However, how aerobic glycolysis is directly regulated is largely unknown. Here, we show that ectopic Zeb1 directly increases the transcriptional expression of HK2, PFKP, and PKM2, which are glycolytic rate-determining enzymes, thus promoting the Warburg effect and breast cancer proliferation, migration, and chemoresistance in vitro and in vivo. In addition, Zeb1 exerts its biological effects to induce glycolytic activity in response to hypoxia via the PI3K/Akt/HIF-1α signaling axis, which contributes to fostering an immunosuppressive tumor microenvironment (TME). Mechanistically, breast cancer cells with ectopic Zeb1 expression produce lactate in the acidic tumor milieu to induce the alternatively activated (M2) macrophage phenotype through stimulation of the PKA/CREB signaling pathway. Clinically, the expression of Zeb1 is positively correlated with dysregulation of aerobic glycolysis, accumulation of M2-like tumor-associated macrophages (TAMs) and a poor prognosis in breast cancer patients. In conclusion, these findings identify a Zeb1-dependent mechanism as a driver of breast cancer progression that acts by stimulating tumor-macrophage interplay, which could be a viable therapeutic target for the treatment of advanced human cancers.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Glucólisis/genética , Humanos , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Microambiente Tumoral , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
18.
J Sport Health Sci ; 11(4): 466-478, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35218948

RESUMEN

BACKGROUND: Promoting cardiac lymphangiogenesis exerts beneficial effects for the heart. Exercise can induce physiological cardiac growth with cardiomyocyte hypertrophy and increased proliferation markers in cardiomyocytes. However, it remains unclear whether and how lymphangiogenesis contributes to exercise-induced physiological cardiac growth. We aimed to investigate the role and mechanism of lymphangiogenesis in exercise-induced physiological cardiac growth. METHODS: Adult C57BL6/J mice were subjected to 3 weeks of swimming exercise to induce physiological cardiac growth. Oral treatment with vascular endothelial growth factor receptor 3 (VEGFR3) inhibitor SAR131675 was used to investigate whether cardiac lymphangiogenesis was required for exercise-induced physiological cardiac growth by VEGFR3 activation. Furthermore, human dermal lymphatic endothelial cell (LEC)-conditioned medium was collected to culture isolated neonatal rat cardiomyocytes to determine whether and how LECs could influence cardiomyocyte proliferation and hypertrophy. RESULTS: Swimming exercise induced physiological cardiac growth accompanied by a remarkable increase of cardiac lymphangiogenesis as evidenced by increased density of lymphatic vessel endothelial hyaluronic acid receptor 1-positive lymphatic vessels in the heart and upregulated LYVE-1 and Podoplanin expressions levels. VEGFR3 was upregulated in the exercised heart, while VEGFR3 inhibitor SAR131675 attenuated exercise-induced physiological cardiac growth as evidenced by blunted myocardial hypertrophy and reduced proliferation marker Ki67 in cardiomyocytes, which was correlated with reduced lymphatic vessel density and downregulated LYVE-1 and Podoplanin in the heart upon exercise. Furthermore, LEC-conditioned medium promoted both hypertrophy and proliferation of cardiomyocytes and contained higher levels of insulin-like growth factor-1 and the extracellular protein Reelin, while LEC-conditioned medium from LECs treated with SAR131675 blocked these effects. Functional rescue assays further demonstrated that protein kinase B (AKT) activation, as well as reduced CCAAT enhancer-binding protein beta (C/EBPß) and increased CBP/p300-interacting transactivators with E (glutamic acid)/D (aspartic acid)-rich-carboxylterminal domain 4 (CITED4), contributed to the promotive effect of LEC-conditioned medium on cardiomyocyte hypertrophy and proliferation. CONCLUSION: Our findings reveal that cardiac lymphangiogenesis is required for exercise-induced physiological cardiac growth by VEGFR3 activation, and they indicate that LEC-conditioned medium promotes both physiological hypertrophy and proliferation of cardiomyocytes through AKT activation and the C/EBPß-CITED4 axis. These results highlight the essential roles of cardiac lymphangiogenesis in exercise-induced physiological cardiac growth.


Asunto(s)
Medios de Cultivo Condicionados , Linfangiogénesis , Miocitos Cardíacos , Condicionamiento Físico Animal , Animales , Medios de Cultivo Condicionados/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/citología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
19.
Sci Rep ; 12(1): 1213, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075137

RESUMEN

Neuropeptides, as pervasive intercellular signaling molecules in the CNS, modulate a variety of behavioral systems in both protostomes and deuterostomes. Allatostatins are neuropeptides in arthropods that inhibit the biosynthesis of juvenile hormones. Based on amino acid sequences, they are divided into three different types in arthropods: allatostatin A, allatostatin B, allatostatin C. Allatostatin C (AstC) was first isolated from Manduca sexta, and it has an important conserved feature of a disulfide bridge formed by two cysteine residues. Moreover, AstC appears to be the ortholog of mammalian somatostatin, and it has functions in common with somatostatin, such as modulating feeding behaviors. The AstC signaling system has been widely studied in arthropods, but minimally studied in molluscs. In this study, we seek to identify the AstC signaling system in the marine mollusc Aplysia californica. We cloned the AstC precursor from the cDNA of Aplysia. We predicted a 15-amino acid peptide with a disulfide bridge, i.e., AstC, using NeuroPred. We then cloned two putative allatostatin C-like receptors and through NCBI Conserved Domain Search we found that they belonged to the G protein-coupled receptor (GPCR) family. In addition, using an inositol monophosphate 1 (IP1) accumulation assay, we showed that Aplysia AstC could activate one of the putative receptors, i.e., the AstC-R, at the lowest EC50, and AstC without the disulfide bridge (AstC') activated AstC-R with the highest EC50. Moreover, four molluscan AstCs with variations of sequences from Aplysia AstC but with the disulfide bridge activated AstC-R at intermediate EC50. In summary, our successful identification of the Aplysia AstC precursor and its receptor (AstC-R) represents the first example in molluscs, and provides an important basis for further studies of the AstC signaling system in Aplysia and other molluscs.


Asunto(s)
Aplysia/metabolismo , Neuropéptidos/metabolismo , Secuencia de Aminoácidos , Animales , Aplysia/genética , Células CHO , Cricetulus , Evolución Molecular , Neuropéptidos/química , Neuropéptidos/genética , Filogenia
20.
Cancer Gene Ther ; 29(8-9): 1181-1192, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35058607

RESUMEN

USP51 is a member of the deubiquitinase (DUB) family that participates in many pathophysiological processes. However, the aberrant expression and biological function of USP51 in cancer progression remain largely unclear. In this study, we demonstrated that USP51 is overexpressed in metastatic human lung adenocarcinoma and patients with high USP51 expression in their tumors have shorter overall survival than those with low expression of USP51. Moreover, we showed that USP51 promotes tumor metastasis and invasion through regulating ZEB1, which is a key transcriptional factor that induces the malignant progression of lung adenocarcinoma. In terms of molecular mechanism, USP51 is phosphorylated and activated by CDK4/6, thus resulting in the deubiquitination and stabilization of ZEB1 protein. Of note, we also confirmed that the expression of p-RB (an indicator of CDK4/6 activity), p-USP51 and ZEB1 are significantly positively correlated in human lung adenocarcinoma samples. In conclusion, these findings revealed that the CDK4/6-USP51-ZEB1 signaling pathway is a driver of lung adenocarcinoma metastasis, which could be a potential therapeutic strategy for the treatment of malignant tumors.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/metabolismo , Adenocarcinoma del Pulmón/genética , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia , Proteasas Ubiquitina-Específicas/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA