Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Phytomedicine ; 127: 155473, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38422972

RESUMEN

BACKGROUND: Doxorubicin (DOX) is widely used for the treatment of a variety of cancers. However, its clinical application is limited by dose-dependent cardiotoxicity. Recent findings demonstrated that autophagy inhibition and apoptosis of cardiomyocytes induced by oxidative stress dominate the pathophysiology of DOX-induced cardiotoxicity (DIC), however, there are no potential molecules targeting on these. PURPOSE: This study aimed to explore whether aucubin (AU) acting on inimitable crosstalk between NRF2 and HIPK2 mediated the autophagy, oxidative stress, and apoptosis in DIC, and provide a new and alternative strategy for the treatment of DIC. METHODS AND RESULTS: We first demonstrated the protection of AU on cardiac structure and function in DIC mice manifested by increased EF and FS values, decreased serum CK-MB and LDH contents and well-aligned cardiac tissue in HE staining. Furthermore, AU alleviated DOX-induced myocardial oxidative stress, mitochondrial damage, apoptosis, and autophagy flux dysregulation in mice, as measured by decreased ROS, 8-OHdG, and TUNEL-positive cells in myocardial tissue, increased SOD and decreased MDA in serum, aligned mitochondria with reduced vacuoles, and increased autophagosomes. In vitro, AU alleviated DOX-induced oxidative stress, autophagy inhibition, and apoptosis by promoting NRF2 and HIPK2 expression. We also identified crosstalk between NRF2 and HIPK2 in DIC as documented by overexpression of NRF2 or HIPK2 reversed cellular oxidative stress, autophagy blocking, and apoptosis aggravated by HIPK2 or NRF2 siRNA, respectively. Simultaneously, AU promoted the expression and nuclear localization of NRF2 protein, which was reversed by HIPK2 siRNA, and AU raised the expression of HIPK2 protein as well, which was reversed by NRF2 siRNA. Crucially, AU did not affect the antitumor activity of DOX against MCF-7 and HepG2 cells, which made up for the shortcomings of previous anti-DIC drugs. CONCLUSION: These collective results innovatively documented that AU regulated the unique crosstalk between NRF2 and HIPK2 to coordinate oxidative stress, autophagy, and apoptosis against DIC without compromising the anti-tumor effect of DOX in vitro.


Asunto(s)
Cardiotoxicidad , Glucósidos Iridoides , Factor 2 Relacionado con NF-E2 , Ratones , Animales , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Doxorrubicina/farmacología , Miocitos Cardíacos , Apoptosis , Estrés Oxidativo , ARN Interferente Pequeño/farmacología , Autofagia
2.
Heart Fail Rev ; 28(6): 1405-1415, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37414918

RESUMEN

Anthracyclines and trastuzumab are widely used to treat breast cancer but increase the risk of cardiomyopathy and heart failure. With the use of trastuzumab and anthracycline-containing medications, this study intends to evaluate the effectiveness and security of current treatments against cardiotoxicity. We conducted a systematic review of randomized controlled trials (RCTs), which used at least one angiotensin-converting enzyme inhibitor (ACEI), angiotensin receptor blocker (ARB), or beta-blocker (BB) to prevent cardiotoxicity of antineoplastic agents for breast cancer, in 4 databases (PubMed, Cochrane Library, EMBASE, Web of Science) from inception to 11 May 2022, without language restrictions. The outcome of interest was left ventricular ejection fraction (LVEF) and adverse events. Stata 15 and R software 4.2.1 were used to perform all statistical analyses. The Cochrane version 2 of the risk of bias tool was used to assess the risk of bias, and the grading of recommendations assessment, development, and evaluation (GRADE) assessment was used to appraise the quality of the evidence. Fifteen randomized clinical studies with a total of 1977 patients were included in the analysis. The included studies demonstrated statistically significant LVEF in the ACEI/ARB and BB treatment groups (χ2 = 184.75, I2 = 88.6%, p = 0.000; SMD 0.556, 95% CI 0.299 to 0.813). In an exploratory subgroup analysis, the benefit of experimental agents on LVEF, whether anthracyclines or trastuzumab, was prominent in patients treated with ACEIs, ARBs, and BBs. Compared to placebo, ACEI/ARB and BB treatments in breast cancer patients protect against cardiotoxicity after trastuzumab and anthracycline-containing medication treatment, indicating a benefit for both.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Antineoplásicos/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Trastuzumab/efectos adversos , Antagonistas de Receptores de Angiotensina/uso terapéutico , Antibióticos Antineoplásicos/uso terapéutico , Antraciclinas/efectos adversos , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Biomed Pharmacother ; 163: 114868, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37201263

RESUMEN

Retinoid X receptor alpha (RXRα) is a nuclear transcription factor that extensively regulates energy metabolism in cardiovascular diseases. Identification of targeted RXRα drugs for heart failure (HF) therapy is urgently needed. Neocryptotanshinone (NCTS) is a component derived from Salvia miltiorrhiza Bunge, the effect and mechanism of which for treating HF have not been reported. The goal of this study was to explore the pharmacological effects of NCTS on energy metabolism to protect against HF post-acute myocardial infarction (AMI) via RXRα. We established a left anterior descending artery ligation-induced HF post-AMI model in mice and an oxygen-glucose deprivation-reperfusion-induced H9c2 cell model to investigate the cardioprotective effect of NCTS. Component-target binding techniques, surface plasmon resonance (SPR), microscale thermophoresis (MST) and small interfering RNA (siRNA) transfection were applied to explore the potential mechanism by which NCTS targets RXRα. The results showed that NCTS protects the heart against ischaemic damage, evidenced by improvement of cardiac dysfunction and attenuation of cellular hypoxic injury. Importantly, the SPR and MST results showed that NCTS has a high binding affinity for RXRα. Meanwhile, the critical downstream target genes of RXRα/PPARα, which are involved in fatty acid metabolism, including Cd36 and Cpt1a, were upregulated under NCTS treatment. Moreover, NCTS enhanced TFAM levels, promoted mitochondrial biogenesis and increased myocardial adenosine triphosphate levels by activating RXRα. In conclusion, we confirmed that NCTS improves myocardial energy metabolism, including fatty acid oxidation and mitochondrial biogenesis, by regulating the RXRα/PPARα pathway in mice with HF post-AMI.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Ratones , Cardiotónicos/farmacología , Proteínas Portadoras , Diterpenos/química , Diterpenos/farmacología , Ácidos Grasos/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , PPAR alfa/metabolismo , Receptor alfa X Retinoide/metabolismo , Factores de Transcripción/metabolismo
4.
Cardiovasc Ther ; 2022: 6442122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186487

RESUMEN

Background: Oral iron supplement is commonly prescribed to heart failure patients with iron deficiency. However, the effects of oral iron for heart failure remain controversial. This study included randomized controlled trials (RCTs) for meta-analysis to evaluate the effects of oral iron for heart failure patients. Methods: Nine databases (The Cochrane Library, Embase, PubMed, CINAHL, Web of science, CNKI, SinoMed, VIP, and Wanfang) were searched for RCTs of oral iron for heart failure from inception to October 2021. The effects were assessed with a meta-analysis using Revman 5.3 software. The trial sequential analysis was performed by TSA 0.9.5.10 beta software. The risk of bias of trials was evaluated via Risk of Bias tool. The evidence quality was assessed through GRADE tool. Results: Four studies including 582 patients with heart failure and iron deficiency were enrolled. The results indicated that oral iron treatment could improve left ventricular ejection fraction (LVEF, MD = 1.52%, 95% CI: 0.69 to 2.36, P = 0.0003) and serum ferritin (MD = 1.64, 95% CI: 0.26 to 3.02, P = 0.02). However, there was no between-group difference in the 6-minute walk distances (6MWT), N terminal pro B type natriuretic peptide (NT-proBNP) or hemoglobin level when compared with control group. Subgroup analyses revealed that the effects of oral iron on 6 MWT and serum ferritin could not be affected by duration and frequency of oral iron uptakes. In trial sequential analysis of LVEF and serum ferritin, the Z-curves crossed the traditional boundary and trail sequential monitoring boundary but did not reach the required information size. Conclusion: This analysis showed that oral iron could improve cardiac function measured by LVEF, and iron stores measured serum ferritin, but lack of effect on exercise capacity measured by 6 MWT, and iron stores measured by hemoglobin. Given the overall poor methodological quality and evidence quality, these findings should be treated cautiously.


Asunto(s)
Insuficiencia Cardíaca , Deficiencias de Hierro , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Hierro/efectos adversos , Péptido Natriurético Encefálico , Ensayos Clínicos Controlados Aleatorios como Asunto , Volumen Sistólico
5.
Oxid Med Cell Longev ; 2022: 7176282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275901

RESUMEN

Doxorubicin (DOX) is an anthracycline chemotherapy drug, which is indispensable in antitumor therapy. However, its subsequent induction of cardiovascular disease (CVD) has become the primary cause of mortality in cancer survivors. Accumulating evidence has demonstrated that cardiac mitochondrial bioenergetics changes have become a significant marker for doxorubicin-induced cardiotoxicity (DIC). Here, we mainly summarize the related mechanisms of DOX-induced cardiac mitochondrial bioenergetics disorders reported in recent years, including mitochondrial substrate metabolism, the mitochondrial respiratory chain, myocardial ATP storage and utilization, and other mechanisms affecting mitochondrial bioenergetics. In addition, intervention for DOX-induced cardiac mitochondrial bioenergetics disorders using chemical drugs and traditional herbal medicine is also summarized, which will provide a comprehensive process to study and develop more appropriate therapeutic strategies for DIC.


Asunto(s)
Cardiotoxicidad , Cardiopatías , Humanos , Cardiotoxicidad/metabolismo , Miocitos Cardíacos/metabolismo , Doxorrubicina/efectos adversos , Metabolismo Energético , Cardiopatías/inducido químicamente , Cardiopatías/tratamiento farmacológico , Cardiopatías/metabolismo , Adenosina Trifosfato/metabolismo
6.
Oxid Med Cell Longev ; 2022: 4344677, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36120600

RESUMEN

Doxorubicin (DOX), the anthracycline chemotherapeutic agent, is widely used for the treatment of various cancers. However, its clinical application is compromised by dose-dependent and fatal cardiotoxicity. This study is aimed at investigating the cardioprotective effects of Qishen granule (QSG) and the specific mechanism by which QSG alleviates DOX-induced cardiotoxicity (DIC) and providing an alternative for the treatment of DIC. We first evaluated the cardioprotective effects of QSG in a DIC mouse model, and the obtained results showed that QSG significantly protected against DOX-induced myocardial structural and functional damage, mitochondrial oxidative damage, and apoptosis. Subsequently, after a comprehensive understanding of the specific roles and recent developments of p53-mediated mitochondrial quality control mechanisms in DIC, we investigated whether QSG acted on MDM2 to regulate the activity of p53 and downstream mitophagy and mitochondrial biogenesis. The in vivo results showed that DOX inhibited mitochondrial biogenesis and blocked mitophagy in the mouse myocardium, while QSG reversed these effects. Mechanistically, we combined nutlin-3, which inhibits the binding of p53 and MDM2, with DOX and QSG and evaluated their influence on mitophagy and mitochondrial biogenesis in H9C2 cardiomyocytes. The obtained results showed that both DOX and nutlin-3 substantially inhibited mitophagy and mitochondrial biogenesis and induced mitochondrial oxidative damage and apoptosis, which could be partially recovered by QSG. Importantly, the immunoprecipitation results showed that QSG promoted the binding of MDM2 to p53, thus decreasing the level of p53 protein and the binding of p53 to Parkin. Collectively, QSG could promote the degradation of p53 by enhancing the binding of MDM2 to the p53 protein, resulting in the reduced binding of p53 to the Parkin protein, thus improving Parkin-mediated mitophagy. Increased degradation of p53 protein by QSG simultaneously enhanced mitochondrial biogenesis mediated by PGC-1α. Ultimately, QSG relieved DOX-induced mitochondrial oxidative damage and apoptosis by coordinating mitophagy and mitochondrial biogenesis.


Asunto(s)
Cardiotoxicidad , Mitofagia , Animales , Cardiotoxicidad/prevención & control , Doxorrubicina/toxicidad , Medicamentos Herbarios Chinos , Ratones , Biogénesis de Organelos , Proteína p53 Supresora de Tumor , Ubiquitina-Proteína Ligasas/metabolismo
7.
Front Cell Dev Biol ; 10: 918943, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35959490

RESUMEN

Mitophagy plays a vital role in the selective elimination of dysfunctional and unwanted mitochondria. As a receptor of mitophagy, FUN14 domain containing 1 (FUNDC1) is attracting considerably critical attention. FUNDC1 is involved in the mitochondria fission, the clearance of unfolded protein, iron metabolism in mitochondria, and the crosstalk between mitochondria and endoplasmic reticulum besides mitophagy. Studies have demonstrated that FUNDC1 is associated with the progression of ischemic disease, cancer, and metabolic disease. In this review, we systematically examine the recent advancements in FUNDC1 and the implications of this protein in health and disease.

8.
J Ovarian Res ; 14(1): 118, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34507595

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are gradually reported to be implicated in the development of malignant tumors, including ovarian cancer (OC). This paper intended to explore the function and action mechanism of hsa_circ_0004712 in OC. RESULTS: In our results, hsa_circ_0004712 was aberrantly overexpressed in OC tissues and cells. Downregulation of hsa_circ_0004712 impaired OC cell proliferation, colony formation, invasion and migration, and accelerated apoptosis. Hsa_circ_0004712 directly targeted miR-331-3p whose inhibitors reversed the effects of hsa_circ_0004712 downregulation. FZD4 was targeted by miR-331-3p, and hsa_circ_0004712 could positively regulated FZD4 expression by targeting miR-331-3p. The anti-tumor effects of miR-331-3p restoration were reversed by FZD4 overexpression. Downregulation of hsa_circ_0004712 also impaired tumor development in vivo by regulating miR-331-3p and FZD4. CONCLUSION: In conclusion, hsa_circ_0004712 deficiency repressed OC development by mediating the miR-331-3p/FZD4 pathway, predicting that hsa_circ_0004712 was a promising biomarker for OC diagnosis and therapy.


Asunto(s)
MicroARNs/metabolismo , Neoplasias Ováricas/metabolismo , ARN Circular/metabolismo , Regulación hacia Abajo , Femenino , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Humanos , MicroARNs/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , ARN Circular/genética , Transducción de Señal , Transfección
9.
PLoS One ; 12(4): e0175398, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28388664

RESUMEN

Our previous study found that Lactobacillus plantarum CCFM639 had the ability to alleviate acute aluminum (Al) toxicity when the strain was introduced simultaneously with Al exposure. This research was designed to elucidate the therapeutic effects of living and dead L. plantarum CCFM639 against chronic Al toxicity and to gain insight into the protection modes of this strain. Animals were assigned into control, Al only, Al + living CCFM639, and Al + dead CCFM639 groups. The Al exposure model was established by drinking water for the first 4 weeks. The strain was given after Al exposure by oral gavage at 109 colony-forming units once per day for 12 weeks. The results show that the Al binding ability of dead CCFM639 was similar to that of living CCFM639 in vitro. The ingestion of living or dead CCFM639 has similar effects on levels of Al and trace element in tissues, but living strains led to more significant amelioration of oxidative stress and improvement of memory deficits in Al-exposed mice. In conclusion, in addition to intestinal Al sequestration, CCFM639 treatment offers direct protection against chronic Al toxicity by alleviation of oxidative stress. Therefore, L. plantarum CCFM639 has a potential as dietary supplement ingredient that provides protection against Al-induced injury.


Asunto(s)
Aluminio/toxicidad , Lesiones Encefálicas/prevención & control , Lactobacillus plantarum , Hígado/lesiones , Aluminio/farmacocinética , Animales , Enzimas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA