Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Biol Macromol ; 267(Pt 1): 131492, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604418

RESUMEN

Human heavy chain ferritin (HFn) protein cage has been explored as a nanocarrier for targeted anticancer drug delivery. Here, we introduced a matrix metalloproteinases (MMPs)-cleavable sequence into the DE loop of HFn, creating an MMP-responsive variant, MR-HFn, for localized and extracellular drug release. The crystal structure of MR-HFn revealed that the addition of the MMPs recognition sequence did not affect the self-assembly of HFn but presented a surface-exposed loop susceptible to MMPs cleavage. Biochemical analysis indicated that this engineered protein cage is responsive to MMPs, enabling the targeted release of encapsulated drugs. To evaluate the therapeutic potential of this engineered protein cage, monosubstituted ß-carboxy phthalocyanine zinc (CPZ), a type of photosensitizer, was loaded inside this protein cage. The prepared CPZ@MR-HFn showed higher uptake and stronger phototoxicity in MMPs overexpressed tumor cells, as well as enhanced penetration into multicellular tumor spheroids compared with its counterpart CPZ@HFn in vitro. In vivo, CPZ@MR-HFn displayed a higher tumor inhibitory rate than CPZ@HFn under illumination. These results indicated that MR-HFn is a promising nanocarrier for anticancer drug delivery and the MMP-responsive strategy here can also be adapted for other stimuli.


Asunto(s)
Antineoplásicos , Liberación de Fármacos , Metaloproteinasas de la Matriz , Ingeniería de Proteínas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Metaloproteinasas de la Matriz/metabolismo , Animales , Línea Celular Tumoral , Ratones , Ferritinas/química , Ferritinas/metabolismo , Indoles/química , Indoles/farmacología , Portadores de Fármacos/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química
2.
J Biomol Struct Dyn ; : 1-12, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38111151

RESUMEN

Cancer remains one of the most pressing challenges to global healthcare, exerting a significant impact on patient life expectancy. Cancer metastasis is a critical determinant of the lethality and treatment resistance of cancer. The urokinase-type plasminogen activator receptor (uPAR) shows great potential as a target for anticancer and antimetastatic therapies. In this work, we aimed to identify potential uPAR inhibitors by structural dynamics-based virtual screenings against a natural product library on four representative apo-uPAR structural models recently derived from long-timescale molecular dynamics (MD) simulations. Fifteen potential inhibitors (NP1-NP15) were initially identified through molecular docking, consensus scoring, and visual inspection. Subsequently, we employed MD-based molecular mechanics-generalized Born surface area (MM-GBSA) calculations to evaluate their binding affinities to uPAR. Structural dynamics analyses further indicated that all of the top 6 compounds exhibited stable binding to uPAR and interacted with the critical residues in the binding interface between uPAR and its endogenous ligand uPA, suggesting their potential as uPAR inhibitors by interrupting the uPAR-uPA interaction. We finally predicted the ADMET properties of these compounds. The natural products NP5, NP12, and NP14 with better binding affinities to uPAR than the uPAR inhibitors previously discovered by us were proven to be potentially orally active in humans. This work offers potential uPAR inhibitors that may contribute to the development of novel effective anticancer and antimetastatic therapeutics.Communicated by Ramaswamy H. Sarma.

3.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003338

RESUMEN

Chitinase-3-like protein 1 (CHI3L1), a chitinase-like protein family member, is a secreted glycoprotein that mediates macrophage polarization, inflammation, apoptosis, angiogenesis, and carcinogenesis. Abnormal CHI3L1 expression has been associated with multiple metabolic and neurological disorders, including diabetes, atherosclerosis, and Alzheimer's disease. Aberrant CHI3L1 expression is also reportedly associated with tumor migration and metastasis, as well as contributions to immune escape, playing important roles in tumor progression. However, the physiological and pathophysiological roles of CHI3L1 in the development of metabolic and neurodegenerative diseases and cancer remain unclear. Understanding the polarization relationship between CHI3L1 and macrophages is crucial for disease progression. Recent research has uncovered the complex mechanisms of CHI3L1 in different diseases, highlighting its close association with macrophage functional polarization. In this article, we review recent findings regarding the various disease types and summarize the relationship between macrophages and CHI3L1. Furthermore, this article also provides a brief overview of the various mechanisms and inhibitors employed to inhibit CHI3L1 and disrupt its interaction with receptors. These endeavors highlight the pivotal roles of CHI3L1 and suggest therapeutic approaches targeting CHI3L1 in the development of metabolic diseases, neurodegenerative diseases, and cancers.


Asunto(s)
Quitinasas , Neoplasias , Enfermedades Neurodegenerativas , Humanos , Inflamación/metabolismo , Macrófagos/metabolismo , Proteína 1 Similar a Quitinasa-3
4.
J Hazard Mater ; 460: 132454, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37703742

RESUMEN

The excessive use of quaternary ammonium compounds (QACs) following the COVID-19 pandemic has raised substantial concerns regarding their biosafety. Overuse of QACs has been associated with chronic biological adverse effects, including genotoxicity or carcinogenicity. In particular, inadvertent intravascular administration or oral ingestion of QACs can lead to fatal acute toxicity. To enhance the biosafety and antimicrobial efficacy of QACs, this study reports a new series of QACs, termed as PACs, with the alkyl chain of benzalkonium substituted by a phthalocyanine moiety. Firstly, the rigid phthalocyanine moiety enhances the selectivity of QACs to bacteria over human cells and reduces alkyl chain's entropic penalty of binding to bacterial membranes. Furthermore, phthalocyanine neutralizes hemolysis and cytotoxicity of QACs by binding with albumin in plasma. Our experimental results demonstrate that PACs inherit the optical properties of phthalocyanine and validate the broad-spectrum antibacterial activity of PACs in vitro. Moreover, the intravascular administration of the most potent PAC, PAC1a, significantly reduced bacterial burden and ameliorated inflammation level in a bacteria-induced septic mouse model. This study presents a new strategy to improve the antimicrobial efficacy and biosafety of QACs, thus expanding their range of applications to the treatment of systemic infections.


Asunto(s)
COVID-19 , Desinfectantes , Animales , Ratones , Humanos , Antibacterianos/toxicidad , Compuestos de Amonio Cuaternario/toxicidad , Contención de Riesgos Biológicos , Pandemias , Indoles/toxicidad
5.
J Med Chem ; 66(8): 5415-5426, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36854648

RESUMEN

Diltiazem and glibenclamide are commonly used hypotensive and antidiabetic drugs. This study reports the discovery of the potential antitumor and antimetastatic effects of these two drugs using a structural dynamics-driven virtual screening targeting urokinase receptor (uPAR). Owing to uPAR's high flexibility, currently resolved crystal structures of uPAR, all in ligand-bound states, provide limited representations of its physiological conformation. To improve the accuracy of screening, we performed a long-timescale molecular dynamics simulation and obtained the representative conformations of apo-uPAR as the targets for our screening. Experimentally, we demonstrated that diltiazem and glibenclamide bound uPAR with KD values in the micromolar range. In addition, both compounds effectively suppressed tumor growth and metastasis in a uPAR-dependent manner in vitro and in vivo. This work not only provides two potent uPAR inhibitors but also reports a proof-of-concept study on the potential off-label antitumor and antimetastatic uses of diltiazem and glibenclamide.


Asunto(s)
Neoplasias , Activador de Plasminógeno de Tipo Uroquinasa , Humanos , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Diltiazem , Gliburida , Neoplasias/patología , Ligandos
6.
Int J Pharm ; 634: 122636, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36696930

RESUMEN

Urokinase plasminogen activator receptor (uPAR) is a key participant in extracellular proteolysis, tissue remodeling and cell motility. uPAR overexpresses in most solid tumors and several hematologic malignancies, but has low levels on normal tissues, thus is advocated as a molecular target for cancer therapy. One of the obstacles for the evaluation of uPAR targeting agents in preclinical study is the species specificity, where targeting agents for human uPAR  usually not bind to murine uPAR. Here, we develop a targeting agent that binds to both murine and human uPAR. This targeting agent is genetically fused to human serum albumin, a commonly used drug carrier, and the final construct is named as uPAR targeting carrier (uPARTC). uPARTC binds specifically to uPAR-overexpressing 293T/huPAR and 293T/muPAR as demonstrated by flow cytometry. A cytotoxic compound, celastrol, is embedded into uPARTC non-covalently. The resulting macromolecular complex show effective proliferation inhibition on both murine and human uPAR overexpressing cells, and exhibit potent antitumor efficacy on hepatoma H22-bearing mice. This work demonstrates that uPARTC is a promising tumor targeting drug carrier, which address the species-specificity challenge of uPAR targeting agents and can be used to load other cytotoxic compounds.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Ratones , Animales , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Portadores de Fármacos , Receptores de Albúmina , Albúminas
7.
Mol Pharm ; 20(2): 905-917, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36463525

RESUMEN

Triple-negative breast cancer (TNBC) is highly aggressive and causes a higher proportion of metastatic cases. However, therapies directed to specific molecular targets have rarely achieved clinically meaningful improvements in the outcome of TNBC therapy. A urokinase-type plasminogen activator (uPA), one of the best-validated biomarkers of breast cancer, is an extracellular proteolytic serine protease involved in many pathological and physiological processes, including tumor cell invasion and metastasis. Nafamostat mesylate (NM) is a synthetic compound that inhibits various serine proteases and has been used as a therapeutic agent for the treatment of TNBC. Nevertheless, NM has poor specificity for serine proteases and is easy be hydrolyzed; moreover, the inhibitory mechanism of TNBC therapy is unclear. In this study, we combine NM with a macromolecular drug delivery vehicle, mouse amino-terminal fragment of urokinase-human serum albumin (mATF-HSA), to form a complex (mATF-HSA:NM) using the dilution-incubation-purification method. mATF specifically targets uPAR overexpressed on the surface of TNBC cells; moreover, HSA prevents NM from being hydrolyzed by numerous serine proteases. mATF-HSA:NM showed stronger inhibitory effects on the proliferation and metastasis of TNBC in vitro and in vivo without significant cytotoxicity on normal cells and tissues. In addition, we demonstrated that NM mediates metastasis of TNBC cells through inhibition of uPA using a stable uPA knockdown cell line (MDA-MB231 shuPA). Overall, we have developed a macromolecular complex targeted to treat high uPAR-expressing tumor types, and mATF-HSA can potentially be used to load other types of drugs with tumor-targeting specificity for mouse tumor models and is a promising tool to study tumor biology in mouse tumor models.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Activador de Plasminógeno de Tipo Uroquinasa , Humanos , Ratones , Animales , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Albúmina Sérica Humana , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Resultado del Tratamiento
8.
Biophys J ; 121(20): 3940-3949, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36039386

RESUMEN

Nafamostat mesylate (NM) is a synthetic compound that inhibits various serine proteases produced during the coagulation cascade and inflammation. Previous studies showed that NM was a highly safe drug for the treatment of different cancers, but the precise functions and mechanisms of NM are not clear. In this study, we determined a series of crystal structures of NM and its hydrolysates in complex with a serine protease (urokinase-type plasminogen activator [uPA]). These structures reveal that NM was cleaved by uPA and that a hydrolyzed product (4-guanidinobenzoic acid [GBA]) remained covalently linked to Ser195 of uPA, and the other hydrolyzed product (6-amidino-2-naphthol [6A2N]) released from uPA. Strikingly, in the inactive uPA (uPA-S195A):NM structure, the 6A2N side of intact NM binds to the specific pocket of uPA. Molecular dynamics simulations and end-point binding free-energy calculations show that the conf1 of NM (6A2N as P1 group) in the uPA-S195A:NM complex may be more stable than conf2 of NM (GBA as P1 group). Moreover, in the structure of uPA:NM complex, the imidazole group of His57 flips further away from Ser195 and disrupts the stable canonical catalytic triad conformation. These results not only reveal the inhibitory mechanism of NM as an efficient serine protease inhibitor but also might provide the structural basis for the further development of serine protease inhibitors.


Asunto(s)
Inhibidores de Serina Proteinasa , Activador de Plasminógeno de Tipo Uroquinasa , Activador de Plasminógeno de Tipo Uroquinasa/química , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/metabolismo , Serina Proteasas , Imidazoles
9.
Int J Biol Macromol ; 216: 172-178, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35788007

RESUMEN

Metallodrugs are important for anticancer treatments. They bind mainly to human serum albumin (HSA) in blood circulation, greatly modulating their pharmacokinetics and anticancer efficacy. Fatty acid (FA) is one of the most important endogenous ligands of HSA with tight binding to HSA and affecting its conformation. However, the effect of fatty acids on metallodrugs interaction with HSA is unknown. Here we identify the binding sites of a widely used metallodrug, cisplatin, in HSA in the presence or absence of a representative fatty acid, myristate, by X-ray crystallography. Our crystal structures indicate that the sidechain of residue Met548 becomes more exposed to solvent in the presence of fatty acid, and is the main Pt binding site together with Met329 in HSA:Myr:cisplatin ternary structure. An undoubted new Pt binding site is detected at His338 in the presence of fatty acid, and additional two sites are also identified at His146 and His440 + K436. In addition, we revealed the mechanism of cisplatin-induced HSA aggregation, which is due to the crosslinking between Met298 and His510 of two HSA molecules.


Asunto(s)
Cisplatino , Albúmina Sérica Humana , Sitios de Unión , Cisplatino/farmacología , Ácidos Grasos/química , Humanos , Modelos Moleculares , Unión Proteica , Albúmina Sérica/química , Albúmina Sérica Humana/metabolismo
10.
J Biol Chem ; 298(7): 102120, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35697069

RESUMEN

Aflatoxins are a series of highly toxic and carcinogenic secondary metabolites that are synthesized by Aspergillus species. The degradation of aflatoxin enzymes is an important regulatory mechanism which modulates mycotoxin producing. The retromer complex is responsible for the retrograde transport of specific biomolecules and the vacuolar fusion in the intracellular transport. Late endosomal-associated GTPase (Rab7) has been shown to be a downstream effector protein of the retromer complex. A deficiency in the retromer complex or Rab7 results in several cellular trafficking problems in yeast and humans, like protein abnormal accumulation. However, whether retromer dysfunction is involved in aflatoxin synthesis remains unclear. Here, we report that the core retromer complex, which comprises three vacuolar protein sorting-associated proteins (AflVps26-AflVps29-AflVps35), is essential for the development of dormant and resistant fungal forms such as conidia (asexual reproductive spore) and sclerotia (hardened fungal mycelium), as well as aflatoxin production and pathogenicity, in Aspergillus flavus. In particular, we show the AflVps26-AflVps29-AflVps35 complex is negatively correlated with aflatoxin exportation. Structural simulation, site-specific mutagenesis, and coimmunoprecipitation experiments showed that interactions among AflVps26, AflVps29, and AflVps35 played crucial roles in the retromer complex executing its core functions. We further found an intrinsic connection between AflRab7 and the retromer involved in vesicle-vacuole fusion, which in turn affected the accumulation of aflatoxin synthesis-associated enzymes, suggesting that they work together to regulate the production of toxins. Overall, these results provide mechanistic insights that contribute to our understanding of the regulatory role of the core retromer complex in aflatoxin metabolism.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Aflatoxinas/metabolismo , Aspergillus/metabolismo , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Metabolismo Secundario , Esporas Fúngicas
11.
Pharmacol Res ; 182: 106331, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35772646

RESUMEN

The Angiopoietin (Ang)-Tyrosine kinase with immunoglobulin-like and EGF-like domains (Tie) axis is an endothelial cell-specific ligand-receptor signaling pathway necessary for vascular and lymphatic development. The Ang-Tie axis is involved in regulating angiogenesis, vascular remodeling, vascular permeability, and inflammation to maintain vascular quiescence. Disruptions in the Ang-Tie axis are involved in many vascular and lymphatic diseases and play an important role in physiological and pathological vascular processes. Given recent advances in the Ang-Tie axis in the vascular and lymphatic systems, this review focuses on the multiple functions of the Ang-Tie axis in inflammation-induced vascular permeability, vascular remodeling, atherosclerosis, ocular angiogenesis, tumor angiogenesis, and metastasis. A summary of relevant therapeutic approaches to the Ang-Tie axis, including therapeutic antibodies, recombinant proteins and small molecule drugs are also discussed. The purpose of this review is to provide new hypotheses and identify potential therapeutic strategies based on the Ang-Tie signaling axis for the treatment of vascular and lymphatic-related diseases.


Asunto(s)
Angiopoyetinas , Receptor TIE-2 , Angiopoyetina 1 , Angiopoyetinas/metabolismo , Humanos , Inflamación , Sistema Linfático/metabolismo , Neovascularización Patológica , Receptor TIE-2/metabolismo
12.
J Med Chem ; 65(3): 1933-1945, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34898192

RESUMEN

The urokinase plasminogen activator (uPA) plays a critical role in tumor cell invasion and migration and is a promising antimetastasis target. 6-Substituted analogues of 5-N,N-(hexamethylene)amiloride (HMA) are potent and selective uPA inhibitors that lack the diuretic and antikaliuretic properties of the parent drug amiloride. However, the compounds display pronounced selectivity for human over mouse uPA, thus confounding interpretation of data from human xenograft mouse models of cancer. Here, computational and experimental findings reveal that residue 99 is a key contributor to the observed species selectivity, whereby enthalpically unfavorable expulsion of a water molecule by the 5-N,N-hexamethylene ring occurs when residue 99 is Tyr (as in mouse uPA). Analogue 7 lacking the 5-N,N-hexamethylene ring maintained similar water networks when bound to human and mouse uPA and displayed reduced selectivity, thus supporting this conclusion. The study will guide further optimization of dual-potent human/mouse uPA inhibitors from the amiloride class as antimetastasis drugs.


Asunto(s)
Amilorida/análogos & derivados , Inhibidores Enzimáticos/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores , Agua/química , Amilorida/química , Amilorida/metabolismo , Animales , Inhibidores Enzimáticos/química , Humanos , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Mutación , Unión Proteica , Especificidad de la Especie , Termodinámica , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
13.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2633-2644, 2021 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-34472284

RESUMEN

Endothelial cells that form the inner layers of both blood and lymphatic vessels are important components of the vascular system and are involved in the pathogenesis of vascular and lymphatic diseases. Angiopoietin (Ang)-Tie axis in endothelial cells is the second endothelium-specific ligand-receptor signaling system necessary for embryonic cardiovascular and lymphatic development in addition to the vascular endothelial growth factor receptor pathway. The Ang-Tie axis also maintains vascular homeostasis by regulating postnatal angiogenesis, vessel remodeling, vascular permeability, and inflammation. Therefore, the dysfunction of this system leads to many vascular and lymphatic diseases. In light of the recent advances on the role of the Ang-Tie axis in vascular and lymphatic system-related diseases, this review summarizes the functions of the Ang-Tie axis in inflammation-induced vascular permeability, vascular remodeling, ocular angiogenesis, shear stress response, atherosclerosis, tumor angiogenesis, and metastasis. Moreover, this review summarizes the relevant therapeutic antibodies, recombinant proteins, and small molecular drugs associated with the Ang-Tie axis.


Asunto(s)
Angiopoyetinas , Enfermedades Linfáticas , Células Endoteliales/metabolismo , Humanos , Sistema Linfático/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular
14.
Vet Res ; 52(1): 97, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193250

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is a serious disease burdening global swine industry. Infection by its etiological agent, PRRS virus (PRRSV), shows a highly restricted tropism of host cells and has been demonstrated to be mediated by an essential scavenger receptor (SR) CD163. CD163 fifth SR cysteine-rich domain (SRCR5) is further proven to play a crucial role during viral infection. Despite intense research, the involvement of CD163 SRCR5 in PRRSV infection remains to be elucidated. In the current study, we prepared recombinant monkey CD163 (moCD163) SRCR5 and human CD163-like homolog (hCD163L1) SRCR8, and determined their crystal structures. After comparison with the previously reported crystal structure of porcine CD163 (pCD163) SRCR5, these structures showed almost identical structural folds but significantly different surface electrostatic potentials. Based on these differences, we carried out mutational research to identify that the charged residue at position 534 in association with the one at position 561 were important for PRRSV-2 infection in vitro. Altogether the current work sheds some light on CD163-mediated PRRSV-2 infection and deepens our understanding of the viral pathogenesis, which will provide clues for prevention and control of PRRS.


Asunto(s)
Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Dominios Proteicos/inmunología , Receptores de Superficie Celular/inmunología , Animales , Mutación , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Sus scrofa , Porcinos
15.
J Virol ; 95(19): e0086121, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34160253

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen causing the coronavirus disease 2019 (COVID-19) global pandemic. No effective treatment for COVID-19 has been established yet. The serine protease transmembrane protease serine 2 (TMPRSS2) is essential for viral spread and pathogenicity by facilitating the entry of SARS-CoV-2 into host cells. The protease inhibitor camostat, an anticoagulant used in the clinic, has potential anti-inflammatory and antiviral activities against COVID-19. However, the potential mechanisms of viral resistance and antiviral activity of camostat are unclear. Herein, we demonstrate high inhibitory potencies of camostat for a panel of serine proteases, indicating that camostat is a broad-spectrum inhibitor of serine proteases. In addition, we determined the crystal structure of camostat in complex with a serine protease (uPA [urokinase-type plasminogen activator]), which reveals that camostat is inserted in the S1 pocket of uPA but is hydrolyzed by uPA, and the cleaved camostat covalently binds to Ser195. We also generated a homology model of the structure of the TMPRSS2 serine protease domain. The model shows that camostat uses the same inhibitory mechanism to inhibit the activity of TMPRSS2, subsequently preventing SARS-CoV-2 spread. IMPORTANCE Serine proteases are a large family of enzymes critical for multiple physiological processes and proven diagnostic and therapeutic targets in several clinical indications. The serine protease transmembrane protease serine 2 (TMPRSS2) was recently found to mediate SARS-CoV-2 entry into the host. Camostat mesylate (FOY 305), a serine protease inhibitor active against TMPRSS2 and used for the treatment of oral squamous cell carcinoma and chronic pancreatitis, inhibits SARS-CoV-2 infection of human lung cells. However, the direct inhibition mechanism of camostat mesylate for TMPRSS2 is unclear. Herein, we demonstrate that camostat uses the same inhibitory mechanism to inhibit the activity of TMPRSS2 as uPA, subsequently preventing SARS-CoV-2 spread.


Asunto(s)
Antivirales/farmacología , Ésteres/farmacología , Guanidinas/farmacología , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/química , Serina Endopeptidasas/farmacología , Serina Proteasas/farmacología , Antivirales/química , COVID-19/prevención & control , Carcinoma de Células Escamosas , Ésteres/química , Ésteres/metabolismo , Guanidinas/química , Guanidinas/metabolismo , Humanos , Simulación de Dinámica Molecular , Neoplasias de la Boca , Dominios Proteicos , Alineación de Secuencia , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Serina Proteasas/química , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
16.
Drug Discov Today ; 26(4): 1076-1085, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33486111

RESUMEN

Urokinase-type plasminogen activator receptor (uPAR) mediates a multitude of biological activities, has key roles in several clinical indications, including malignancies and inflammation, and, thus, has attracted intensive research over the past few decades. The pleiotropic functions of uPAR can be attributed to its interaction with an array of partners. Many inhibitors have been developed to intervene with the interaction of uPAR with these partners. Here, we review the development of these classes of uPAR inhibitor and their inhibitory mechanisms to promote the translation of these inhibitors to clinical applications.


Asunto(s)
Descubrimiento de Drogas/métodos , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Transducción de Señal/efectos de los fármacos , Humanos , Receptores del Activador de Plasminógeno Tipo Uroquinasa/antagonistas & inhibidores , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo
17.
Acta Biomater ; 111: 373-385, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32413580

RESUMEN

Nanosized drug delivery systems have emerged to improve the therapeutic performance of anticancer drugs. Here, an amphiphile-based nanoparticle consisting of amphiphilic prodrug N-[3b-acetoxy-urs-12-en-28-oyl]-amino-2-methylpiperazine was developed (UP12 NPs) with uniform sizes (~100 nm), which possessed the advantages of small molecules and nanomedicine. The positively charged UP12 NPs significantly enhanced the cellular drug uptake on HepG2 cells than negatively charged UA NPs. Meanwhile, UP12 and these therapeutic amphiphile-based nanoparticles could induce cell apoptosis more efficiently than that of UA and UA NPs. Moreover, molecular docking demonstrated that the UP12 and intercellular adhesion molecule 1 (ICAM-1) could dock well. UP12 and UP12 NPs significantly decreased the mRNA expression of ICAM-1 and inhibited the migration and adhesion of liver cancer cells (HepG2 cells), which indicated that UP12 might be one of the potential ICAM-1 inhibitors. In vivo, UP12 NPs enhanced tumor accumulation, inhibited tumor lung metastasis and showed good biocompatibility. Overall, UP12 or UP12 NPs could be developed as prospective drugs for cancer metastasis therapy via ICAM-1 mediated cell adhesion. STATEMENT OF SIGNIFICANCE: In this study, we fabricated the therapeutic amphiphile-based nanoparticles by assembly of ursolic acid piperazine derivative N-[3b-acetoxy-urs-12-en-28-oyl]-amino-2-methylpiperazine (name as UP12 NPs) with low cytotoxicity. UP12 NPs exhibited spherical morphology and uniform sizes. Particularly, these therapeutic amphiphile-based nanoparticles significantly enhanced tumor accumulation and inhibited tumor lung metastases via intercellular adhesion molecule 1 (ICAM-1) mediated cell adhesion.


Asunto(s)
Carcinoma Hepatocelular , Molécula 1 de Adhesión Intercelular , Neoplasias Hepáticas , Nanopartículas , Carcinoma Hepatocelular/tratamiento farmacológico , Adhesión Celular , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Estudios Prospectivos
18.
ACS Appl Mater Interfaces ; 12(4): 4221-4230, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31909969

RESUMEN

Paclitaxel (PTX) is a widely used anticancer drug that works by inhibiting microtubule disassembly. PTX safety was greatly enhanced by embedding it with human albumin. Here, we study the synergistic effects of PTX with photodynamic therapy (PDT) both in vitro and in vivo by constructing photosensitizer-PTX nanotheranostics (PPNTs). PPNTs were fabricated via noncovalent hydrophobic interactions and π-π stacking between an amphipathic photosensitizer and PTX with an average diameter of ∼80 nm, and these showed high stability in biological conditions. In a tumor-bearing mouse model, PPNTs were shown to accumulate at the tumor site based on three-dimensional fluorescence tomographic imaging. Under 680 nm light irradiation, PPNTs exhibited a superior solid tumor ablation effect in a mouse model, with a dose of PTX (0.2 mg/kg) that is 10-fold lower than that typically used. Mechanistically, PPNTs induced a strong apoptotic response in cells under light illumination and showed an increased antitumor efficacy that is 47.2-fold and 57.6-fold higher than that of the photosensitizer nanoparticles (PNTs) and free PTX, respectively. In addition, PPNTs showed enhanced cellular uptake with focused mitochondria and lysosome colocalization compared to that of PNTs and the amount of PTX delivered in PPNTs was sufficient to induce cell cycle arrest in the G2/M phase. These findings indicated that the current combination therapy has advantages over monotherapy in promoting tumor regression and ultimately achieving tumor elimination.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Hepáticas/tratamiento farmacológico , Paclitaxel/administración & dosificación , Fármacos Fotosensibilizantes/administración & dosificación , Animales , Antineoplásicos/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/fisiopatología , Células MCF-7 , Masculino , Ratones , Nanopartículas/química , Paclitaxel/química , Fármacos Fotosensibilizantes/química , Tomografía , Ensayos Antitumor por Modelo de Xenoinjerto
19.
RSC Adv ; 10(57): 34517-34526, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35514369

RESUMEN

Triple negative breast cancer (TNBC) is one kind of breast cancer that demonstrates highly aggressive tumor biology. The high heterogeneity of TNBC makes its individual clinical treatment extremely blind and limited, which also introduces more challenges into the diagnosis and treatment of diseases. Urokinase-type plasminogen activator (uPA) is a high level marker for breast cancer, which mediates tumor growth and metastasis. Quercetin is a plant-derived flavonoid in many plants, which inhibits uPA and has low bioavailability and mediocre pharmaceutical efficacy. Thus, we herein developed polymeric nanoparticulate systems from PLGA-TPGS (Qu-NPs) for quercetin oral delivery and evaluated the anticancer effect of this formulation on TNBC in vitro and in vivo. Qu-NPs have a uniform spherical morphology with a mean diameter of 198.4 ± 7.8 nm and good drug loading capacity (8.1 ± 0.4%). Moreover, Qu-NPs exhibited significantly improved inhibition on the growth and metastasis in TNBC cells. Following oral gavage, a remarkable antitumor effect of Qu-NPs on 4T1-bearing mice was observed with a tumor inhibition ratio of 67.88% and fewer lung metastatic colonies. Furthermore, the inhibitory effect of quercetin on the migration of uPA knockdown MDA-MB231 cells was greatly attenuated. Together, Qu-NPs improved the significant antitumor and antimetastatic effects by inhibiting uPA, which provides a new strategy for the treatment of TNBC.

20.
Bioorg Med Chem Lett ; 29(24): 126753, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31679971

RESUMEN

The oral K+-sparing diuretic amiloride shows anti-cancer side-activities in multiple rodent models. These effects appear to arise, at least in part, through moderate inhibition of the urokinase-type plasminogen activator (uPA, Ki = 2.4 µM), a pro-metastatic trypsin-like serine protease that is upregulated in many aggressive solid malignancies. In applying the selective optimization of side-activity (SOSA) approach, a focused library of twenty two 6-substituted amiloride derivatives were prepared, with multiple examples displaying uPA inhibitory potencies in the nM range. X-ray co-crystal structures revealed that the potency increases relative to amiloride arise from increased occupancy of uPA's S1ß subsite by the appended 6-substituents. Leading compounds were shown to have high selectivity over related trypsin-like serine proteases and no diuretic or anti-kaliuretic effects in rats. Compound 15 showed anti-metastatic effects in a xenografted mouse model of late-stage lung metastasis.


Asunto(s)
Amilorida/análogos & derivados , Amilorida/uso terapéutico , Diuréticos/uso terapéutico , Metástasis de la Neoplasia/tratamiento farmacológico , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores , Amilorida/farmacología , Diuréticos/farmacología , Humanos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA