Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
1.
Am J Pathol ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897537

RESUMEN

Lung cancer is an increasingly serious health problem worldwide, and early detection and diagnosis are crucial for successful treatment. With the development of artificial intelligence and the growth of data volume, machine learning techniques can play a significant role in improving the accuracy of early detection in lung cancer. This study proposes a deep learning-based segmentation algorithm for rapid on-site cytopathological evaluation (ROSE) to enhance the diagnostic efficiency of endobronchial ultrasound-guided transbronchial needle aspiration biopsy (EBUS-TBNA) during surgery. By utilizing the CUNet3+ network model, cell clusters, including cancer cell clusters, can be accurately segmented in ROSE-stained pathological sections. The model demonstrated high accuracy, with an F1-score of 0.9604, recall of 0.9609, precision of 0.9654, and accuracy of 0.9834 on the internal testing data set. It also achieved an area under the receiver-operating characteristic curve of 0.9972 for cancer identification. The proposed algorithm provides time savings for on-site diagnosis, improves EBUS-TBNA efficiency, and outperforms classical segmentation algorithms in accurately identifying lung cancer cell clusters in ROSE-stained images. It effectively reduces over-segmentation, decreases network parameters, and enhances computational efficiency, making it suitable for real-time patient evaluation during surgical procedures.

2.
Plant Cell Environ ; 47(8): 3227-3240, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38738504

RESUMEN

Plants synthesise a vast array of volatile organic compounds (VOCs), which serve as chemical defence and communication agents in their interactions with insect herbivores. Although nitrogen (N) is a critical resource in the production of plant metabolites, its regulatory effects on defensive VOCs remain largely unknown. Here, we investigated the effect of N content in tomato (Solanum lycopersicum) on the tobacco cutworm (Spodoptera litura), a notorious agricultural pest, using biochemical and molecular experiments in combination with insect behavioural and performance analyses. We observed that on tomato leaves with different N contents, S. litura showed distinct feeding preference and growth and developmental performance. Particularly, metabolomics profiling revealed that limited N availability conferred resistance upon tomato plants to S. litura is likely associated with the biosynthesis and emission of the volatile metabolite α-humulene as a repellent. Moreover, exogenous application of α-humulene on tomato leaves elicited a significant repellent response against herbivores. Thus, our findings unravel the key factors involved in N-mediated plant defence against insect herbivores and pave the way for innovation of N management to improve the plant defence responses to facilitate pest control strategies within agroecosystems.


Asunto(s)
Herbivoria , Nitrógeno , Hojas de la Planta , Solanum lycopersicum , Spodoptera , Compuestos Orgánicos Volátiles , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Solanum lycopersicum/parasitología , Animales , Nitrógeno/metabolismo , Spodoptera/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Defensa de la Planta contra la Herbivoria , Volatilización , Larva/fisiología
3.
Fitoterapia ; 175: 105908, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479621

RESUMEN

Three undescribed sesquiterpenes, designed as pichinenoid A-C (1-3), along with nine known ones (4-12) were isolated from the stems and leaves of Picrasma chinensis. The new isolates including their absolute configurations were elucidated based on extensive spectroscopic methods, single crystal X-ray diffraction, and electronic circular dichroism (ECD) experiments, as well as comparison with literature data. Structurally, compounds 1 and 2 are descending sesquiterpenes, while pichinenoid C (3) is a rare sesquiterpene bearing a 2-methylenebut-3-enoic acid moiety at the C-6 side chain. All the isolated compounds were tested for their neuroprotective effects against the H2O2-induced damage on human neuroblastoma SH-SY5Y cells, and most of them showed moderate neuroprotective activity. Especially, compounds 1, 3-5, and 7 showed a potent neuroprotective effect at 25 or 50 µM. Moreover, the neuroprotective effects of compounds 1 and 4 were tested on a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model. Results of western blot and immunofluorescence indicated that compound 4 significantly counteract the toxicity of MPTP, and reversed the expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and striatum (ST) of the mouse brain. Interestingly, western blot data suggested compound 4 also enhanced B-cell lymphoma-2 (Bcl-2) and heme oxygenase 1 (HO-1) expressions in the brain tissues from MPTP damaged mouse.


Asunto(s)
Fármacos Neuroprotectores , Picrasma , Hojas de la Planta , Tallos de la Planta , Sesquiterpenos , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/aislamiento & purificación , Sesquiterpenos/farmacología , Sesquiterpenos/aislamiento & purificación , Ratones , Humanos , Línea Celular Tumoral , Estructura Molecular , Picrasma/química , Tallos de la Planta/química , Hojas de la Planta/química , Masculino , Hemo-Oxigenasa 1/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , China , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Ratones Endogámicos C57BL
4.
J Fish Biol ; 104(6): 1899-1909, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38509782

RESUMEN

Tumor necrosis factor α1 (TNFα) is a pleiotropic cytokine involved in immune regulation and cellular homeostasis, but the crucial role of TNFα in fish gut remained unclear. The current study aimed to evaluate the immunoregulatory function of TNFα1 on gut barrier in a novel hybrid fish (WR), which was produced by crossing white crucian carp (Carassius cuvieri, ♀) with red crucian carp (Carassius auratus red var, ♂). In this study, WR-tnfα1 sequence was identified, and a high-level expression was detected in the intestine. Elevated levels of WR-tnfα1 expressions were detected in immune-related tissues and cultured fish cells on stimulation. The appearance of vacuolization and submucosal rupture was observed in TNFα1-treated midgut of WR, along with elevated levels of goblet cell atrophy, whereas no significant changes were detected in most expressions of tight-junction genes and mucin genes. In contrast, WR receiving gut perfusion with WR-TNFα1 showed a remarkable decrease in antioxidant status in midgut, whereas the expression levels of apoptotic genes and redox responsive genes increased sharply. These results suggested that TNFα1 could exhibit a detrimental effect on antioxidant defense and immune regulation in the midgut of WR.


Asunto(s)
Carpas , Inmunidad Mucosa , Factor de Necrosis Tumoral alfa , Animales , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Carpas/inmunología , Carpas/genética , Carpas/metabolismo , Antioxidantes/metabolismo , Masculino , Femenino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Hibridación Genética , Blanco
5.
Br J Cancer ; 130(9): 1517-1528, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38459187

RESUMEN

BACKGROUND: Circß-catenin, our first reported circRNA, has been reported to mediate tumorigenesis in various cancers. However, its biological functions and underlying mechanisms in colorectal cancer (CRC) remain unknown. METHODS: The qRT-PCR examination was used to detect the expression of circß-catenin, miR-197-3p, and CTNND1 in cells and human tissues. Western blot was conducted to detect the protein expression levels. The biological function of circß-catenin was verified by MTT, colony formation, wound healing, and transwell assays. The in vivo effects of circß-catenin were verified by nude mice xenograft and metastasis models. The regulatory network of circß-catenin/miR-197-3p/CTNND1 was confirmed via dual-luciferase reporter and RIP assays. RESULTS: In the present study, circß-catenin was found to promote CRC cell proliferation and metastasis in vitro and in vivo. Mechanistically, circß-catenin served as miRNA decoy to directly bind to miR-197-3p, then antagonized the repression of the target gene CTNND1, and eventually promoted the malignant phenotype of CRC. More interestingly, the inverted repeated Alu pairs termed AluJb1/2 and AluY facilitated the biogenesis of circß-catenin, which could be partially reversed by EIF4A3 binding to Alu element AluJb2. CONCLUSIONS: Our findings illustrated a novel mechanism of circß-catenin in modulating CRC tumorigenesis and metastasis, which provides a potential therapeutic target for CRC patients.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Progresión de la Enfermedad , Factor 4A Eucariótico de Iniciación , Ratones Desnudos , MicroARNs , ARN Circular , beta Catenina , MicroARNs/genética , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , ARN Circular/genética , Animales , Ratones , beta Catenina/metabolismo , beta Catenina/genética , Proliferación Celular/genética , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Catenina delta , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Masculino , Femenino , Movimiento Celular/genética , Ratones Endogámicos BALB C
6.
Stem Cell Rev Rep ; 20(4): 1093-1105, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38457059

RESUMEN

Breast cancer, the most prevalent malignancy in women, often progresses to bone metastases, especially in older individuals. Dormancy, a critical aspect of bone-metastasized breast cancer cells (BCCs), enables them to evade treatment and recur. This dormant state is regulated by bone marrow mesenchymal stem cells (BMMSCs) through the secretion of various factors, including those associated with senescence. However, the specific mechanisms by which BMMSCs induce dormancy in BCCs remain unclear. To address this gap, a bone-specific senescence-accelerated murine model, SAMP6, was utilized to minimize confounding systemic age-related factors. Confirming senescence-accelerated osteoporosis, distinct BMMSC phenotypes were observed in SAMP6 mice compared to SAMR1 counterparts. Notably, SAMP6-BMMSCs exhibited premature senescence primarily due to telomerase activity loss and activation of the p21 signaling pathway. Furthermore, the effects of conditioned medium (CM) derived from SAMP6-BMMSCs versus SAMR1-BMMSCs on BCC proliferation were examined. Intriguingly, only CM from SAMP6-BMMSCs inhibited BCC proliferation by upregulating p21 expression in both MCF-7 and MDA-MB-231 cells. These findings suggest that the senescence-associated secretory phenotype (SASP) of BMMSCs suppresses BCC viability by inducing p21, a pivotal cell cycle inhibitor and tumor suppressor. This highlights a heightened susceptibility of BCCs to dormancy in a senescent microenvironment, potentially contributing to the increased incidence of breast cancer bone metastasis and recurrence observed with aging.


Asunto(s)
Neoplasias de la Mama , Células Madre Mesenquimatosas , Fenotipo Secretor Asociado a la Senescencia , Células Madre Mesenquimatosas/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Femenino , Humanos , Animales , Ratones , Proliferación Celular , Supervivencia Celular , Senescencia Celular , Medios de Cultivo Condicionados/farmacología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Células MCF-7
7.
J Neuroimmune Pharmacol ; 19(1): 4, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305948

RESUMEN

Inflammation plays an important role in the pathogenesis of depression; however, the underlying mechanisms remain unclear. Apart from the disordered circadian rhythm in animal models and patients with depression, dysfunction of clock genes has been reported to be involved with the progress of inflammation. This study aimed to investigate the role of circadian clock genes, especially brain and muscle ARNT-like 1 (Bmal1), in the linkage between inflammation and depression. Lipopolysaccharide (LPS)-challenged rats and BV2 cells were used in the present study. Four intraperitoneal LPS injections of 0.5 mg/kg were administered once every other day to the rats, and BV2 cells were challenged with LPS for 24 h at the working concentration of 1 mg/L, with or without the suppression of Bmal1 via small interfering RNA. The results showed that LPS could successfully induce depression-like behaviors and an "inflammatory storm" in rats, as indicated by the increased immobility time in the forced swimming test and the decreased saccharin preference index in the saccharin preference test, together with hyperactivity of the hypothalamic-pituitary-adrenal axis, hyperactivation of astrocyte and microglia, and increased peripheral and central abundance of tumor necrosis factor-α, interleukin 6, and C-reactive protein. Moreover, the protein expression levels of brain-derived neurotrophic factor, triggering receptor expressed on myeloid cells 1, Copine6, and Synaptotagmin1 (Syt-1) decreased in the hippocampus and hypothalamus, whereas the expression of triggering receptor expressed on myeloid cells 2 increased. Interestingly, the fluctuation of temperature and serum concentration of melatonin and corticosterone was significantly different between the groups. Furthermore, protein expression levels of the circadian locomotor output cycles kaput, cryptochrome 2, and period 2 was significantly reduced in the hippocampus of LPS-challenged rats, whereas Bmal1 expression was significantly increased in the hippocampus but decreased in the hypothalamus, where it was co-located with neurons, microglia, and astrocytes. Consistently, apart from the reduced cell viability and increased phagocytic ability, LPS-challenged BV2 cells presented a similar trend with the changed protein expression in the hippocampus of the LPS model rats. However, the pathological changes in BV2 cells induced by LPS were reversed after the suppression of Bmal1. These results indicated that LPS could induce depression-like pathological changes, and the underlying mechanism might be partly associated with the imbalanced expression of Bmal1 and its regulated dysfunction of the circadian rhythm.


Asunto(s)
Depresión , Lipopolisacáridos , Animales , Ratas , Depresión/inducido químicamente , Hipocampo , Sistema Hipotálamo-Hipofisario/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Músculos/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo
8.
Int J Nanomedicine ; 19: 471-488, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250192

RESUMEN

Background: Osteoporosis is a highly prevalent disease that causes fractures and loss of motor function. Current drugs targeted for osteoporosis often have inevitable side effects. Bone marrow mesenchymal stem cell (BMSCs)-derived apoptotic extracellular vesicles (ApoEVs) are nanoscale extracellular vesicles, which has been shown to promote bone regeneration with low immunogenicity and high biological compatibility. However, natural ApoEVs cannot inherently target bones, and are often eliminated by macrophages in the liver and spleen. Thus, our study aimed to reconstruct ApoEVs to enhance their bone-targeting capabilities and bone-promoting function and to provide a new method for osteoporosis treatment. Methods: We conjugated a bone-targeting peptide, (Asp-Ser-Ser)6 ((DSS)6), onto the surface of ApoEVs using standard carbodiimide chemistry with DSPE-PEG-COOH serving as the linker. The bone-targeting ability of (DSS)6-ApoEVs was determined using an in vivo imaging system and confocal laser scanning microscopy (CLSM). We then loaded ubiquitin ligase RING finger protein146 (RNF146) into BMSCs via adenovirus transduction to obtain functional ApoEVs. The bone-promoting abilities of (DSS)6-ApoEVs and (DSS)6-ApoEVsRNF146 were measured in vitro and in vivo. Results: Our study successfully synthesized bone-targeting and gained functional (DSS)6-ApoEVsRNF146 and found that engineered ApoEVs could promote osteogenesis in vitro and exert significant bone-targeting and osteogenesis-promoting effects to alleviate osteoporosis in a mouse model. Conclusion: To promote the bone-targeting ability of natural ApoEVs, we successfully synthesized engineered ApoEVs, (DSS)6-ApoEVsRNF146 and found that they could significantly promote osteogenesis and alleviate osteoporosis compared with natural ApoEVs, which holds great promise for the treatment of osteoporosis.


Asunto(s)
Vesículas Extracelulares , Osteoporosis , Animales , Ratones , Osteoporosis/tratamiento farmacológico , Péptidos/farmacología , Osteogénesis , Adenoviridae
9.
Genome Biol ; 25(1): 22, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229171

RESUMEN

BACKGROUND: Pubertal growth patterns correlate with future health outcomes. However, the genetic mechanisms mediating growth trajectories remain largely unknown. Here, we modeled longitudinal height growth with Super-Imposition by Translation And Rotation (SITAR) growth curve analysis on ~ 56,000 trans-ancestry samples with repeated height measurements from age 5 years to adulthood. We performed genetic analysis on six phenotypes representing the magnitude, timing, and intensity of the pubertal growth spurt. To investigate the lifelong impact of genetic variants associated with pubertal growth trajectories, we performed genetic correlation analyses and phenome-wide association studies in the Penn Medicine BioBank and the UK Biobank. RESULTS: Large-scale growth modeling enables an unprecedented view of adolescent growth across contemporary and 20th-century pediatric cohorts. We identify 26 genome-wide significant loci and leverage trans-ancestry data to perform fine-mapping. Our data reveals genetic relationships between pediatric height growth and health across the life course, with different growth trajectories correlated with different outcomes. For instance, a faster tempo of pubertal growth correlates with higher bone mineral density, HOMA-IR, fasting insulin, type 2 diabetes, and lung cancer, whereas being taller at early puberty, taller across puberty, and having quicker pubertal growth were associated with higher risk for atrial fibrillation. CONCLUSION: We report novel genetic associations with the tempo of pubertal growth and find that genetic determinants of growth are correlated with reproductive, glycemic, respiratory, and cardiac traits in adulthood. These results aid in identifying specific growth trajectories impacting lifelong health and show that there may not be a single "optimal" pubertal growth pattern.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Adulto , Adolescente , Humanos , Niño , Preescolar , Pubertad/genética , Fenotipo , Estatura/genética , Evaluación de Resultado en la Atención de Salud , Estudios Longitudinales
10.
Expert Opin Drug Saf ; 23(3): 287-296, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37608525

RESUMEN

BACKGROUND: Cardiac adverse events (AEs) are common in tyrosine kinase inhibitors(TKIs). This study explored the cardiac AEs of TKIs through the Food and Drug Administration's Adverse Event Reporting System (FAERS). METHODS: Disproportionality analysis and Bayesian analysis were utilized for data mining of the suspected cardiac AEs of TKIs, based on FAERS data from January 2004 to December 2021. RESULTS: A total of 4708 cardiac AEs reports of sorafenib, regorafenib, lenvatinib, and cabozantinib were identified. Hypertension accounts for the most reported cardiac AE. Lenvatinib appears to induce cardiac failure with the highest signals strength [ROR = 7.7 (3.46,17.17)]. Acute myocardial infarction was detected in lenvatinib [ROR = 7.91 (5.64,11.09)] and sorafenib [ROR = 2.22 (1.74, 2.84)]. Acute coronary syndrome was detected in lenvatinib [ROR = 11.57 (6.84, 19.58)] and sorafenib [ROR = 2.81 (1.87,4.24)]. Atrial fibrillation was detected in sorafenib [ROR = 1.82 (1.55,2.14)] and regorafenib [ROR = 1.36 (1.03,1.81)]. Meanwhile, aortic dissections were detected in sorafenib [ROR = 5.08 (3.31,7.8)] and regorafenib [ROR = 3.39 (1.52,7.56)]. Most patients developed hypertension and cardiac failure within 30 days of initiating TKI treatments. Patients taking lenvatinib had an increased incidence of developing acute coronary syndrome after 180 days of treatment. CONCLUSION: Analysis of FAERS data provides a precise profile on the characteristics of cardiac AEs associated with different TKI regimens. Distinct monitoring and appropriate management are needed in the care of TKI recipients.


Asunto(s)
Síndrome Coronario Agudo , Carcinoma Hepatocelular , Insuficiencia Cardíaca , Hipertensión , Neoplasias Hepáticas , Compuestos de Fenilurea , Piridinas , Quinolinas , Estados Unidos , Humanos , Sorafenib/efectos adversos , Estudios Retrospectivos , Teorema de Bayes , Carcinoma Hepatocelular/tratamiento farmacológico , Farmacovigilancia , Neoplasias Hepáticas/tratamiento farmacológico , United States Food and Drug Administration , Sistemas de Registro de Reacción Adversa a Medicamentos
11.
Int J Biol Macromol ; 254(Pt 1): 127770, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37907174

RESUMEN

TNFα is one of important cytokines belonging to TNF superfamily, which can exhibit a pleiotropic effect in immune modulation, homeostasis as well as pathogenesis. However, its immunoregulatory function on mucosal immunity in fish gut are still unclear. In this study, we aimed to investigated the immunoregulatory role of TNFα1 in midgut of white crucian carp (WCC). WCC-TNFα1 sequence and its deduced structure were firstly identified in WCC. Then, tissue-specific analysis revealed that high-level WCC-TNFα1 expression was detected in gill. After Aeromonas hydrophila and lipopolysaccharide (LPS) stimulated, increased trends of WCC-TNFα1 expressions were detected in immune-related tissues and cultured fish cells, respectively. WCC anal-intubated with WCC-TNFα1 fusion protein showed the increased levels of edema and fuzzy appearance in impaired villi, along with atrophy and reduction of goblet cells (GC). Moreover, the expression levels of tight junction (TJ) genes and mucin genes were consistently lower than those of the control (P < 0.05). WCC-TNFα1 treatment could sharply decrease antioxidant status in midgut, while the expression levels of caspase (CASP) genes, unfolded protein response (UPR) genes and redox response genes increased dramatically. Our results suggested that WCC-TNFα1 could exhibit a detrimental effect on antioxidant and mucosal immune regulation in midgut of WCC.


Asunto(s)
Carpas , Cyprinidae , Enfermedades de los Peces , Animales , Carpas/genética , Carpas/metabolismo , Antioxidantes , Cyprinidae/genética , Factores Inmunológicos , Factor de Necrosis Tumoral alfa/genética , Clonación Molecular , Proteínas de Peces/química , Inmunidad Innata/genética
12.
Hereditas ; 160(1): 39, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102686

RESUMEN

BACKGROUND: As an anticancer Chinese herbal medicine, the effective components and mechanism of Actinidia chinensis Planch (ACP, Tengligen) in the treatment of colon cancer are still unclear. In the present study, the integration of network pharmacology, molecular docking, and cell experiments was employed to study the effective mechanism of ACP against colon cancer. METHODS: The Venn diagram and STRING database were used to construct the protein-protein interaction network (PPI) of ACP-colon cancer, and further topological analysis was used to obtain the key target genes of ACP in colon cancer. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to visualize the related functions and pathways. Molecular docking between key targets and compounds was determined using software such as AutoDockTools. Finally, the effect of ACP on CT26 cells was observed in vitro. RESULTS: The study identified 40 ACP-colon key targets, including CASP3, CDK2, GSK3B, and PIK3R1. GO and KEGG enrichment analyses found that these genes were involved in 211 biological processes and 92 pathways, among which pathways in cancer, PI3K-Akt, p53, and cell cycle might be the main pathways of ACP against colon cancer. Molecular docking verified that the key components of ACP could stably bind to the corresponding targets. The experimental results showed that ACP could inhibit proliferation, induce apoptosis, and downregulate the phosphorylation of PIK3R1, Akt, and GSK3B in CT26 cells. CONCLUSION: ACP is an anti-colon cancer herb with multiple components, and involvement of multiple target genes and signaling pathways. ACP can significantly inhibit proliferation and induce apoptosis of colon cancer cells, which may be closely related to the regulation of PI3K/AKT/GSK3B signal transduction.


Asunto(s)
Actinidia , Neoplasias del Colon , Simulación del Acoplamiento Molecular , Actinidia/genética , Farmacología en Red , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Factores de Transcripción
13.
Front Genet ; 14: 1235337, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028628

RESUMEN

Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes. Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant (p < 5 × 10-8) and suggestive (p < 1 × 10-6) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals). Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue. Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.

14.
Phytomedicine ; 121: 155114, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37816287

RESUMEN

BACKGROUND: Sinomenine (SIN) is the main pharmacologically active component of Sinomenii Caulis and protects against rheumatoid arthritis (RA). In recent years, many studies have been conducted to elucidate the pharmacological mechanisms of SIN in the treatment of RA. However, the molecular mechanism of SIN in RA has not been fully elucidated. PURPOSE: To summarize the pharmacological effects and molecular mechanisms of SIN in RA and clarify the most valuable regulatory mechanisms of SIN to provide clues and a basis for basic research and clinical applications. METHODS: We systematically searched SciFinder, Web of Science, PubMed, China National Knowledge Internet (CNKI), the Wanfang Databases, and the Chinese Scientific Journal Database (VIP). We organized our work based on the PRISMA statement and selected studies for review based on predefined selection criteria. OUTCOME: After screening, we identified 201 relevant studies, including 88 clinical trials and 113 in vivo and in vitro studies on molecular mechanisms. Among these studies, we selected key results for reporting and analysis. CONCLUSIONS: We found that most of the known pharmacological mechanisms of SIN are indirect effects on certain signaling pathways or proteins. SIN was manifested to reduce the release of inflammatory cytokines such as Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), and IL-1ß, thereby reducing the inflammatory response, and apparently blocking the destruction of bone and cartilage. The regulatory effects on inflammation and bone destruction make SIN a promising drug to treat RA. More notably, we believe that the modulation of α7nAChR and the regulation of methylation levels at specific GCG sites in the mPGES-1 promoter by SIN, and its mechanism of directly targeting GBP5, certainly enriches the possibilities and the underlying rationale for SIN in the treatment of inflammatory immune-related diseases.


Asunto(s)
Artritis Reumatoide , Morfinanos , Humanos , Artritis Reumatoide/tratamiento farmacológico , Antiinflamatorios/farmacología , Morfinanos/farmacología , Morfinanos/uso terapéutico , Transducción de Señal
15.
Exp Lung Res ; 49(1): 165-177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37789686

RESUMEN

Background: The most common 'second strike' in mechanically ventilated patients is a pulmonary infection caused by the ease with which bacteria can invade and colonize the lungs due to mechanical ventilation. At the same time, metastasis of lower airway microbiota may have significant implications in developing intubation mechanical ventilation lung inflammation. Thus, we establish a rat model of tracheal intubation with mechanical ventilation and explore the effects of mechanical ventilation on lung injury and microbiological changes in rats. To provide a reference for preventing and treating bacterial flora imbalance and pulmonary infection injury caused by mechanical ventilation of tracheal intubation. Methods: Sprague-Dawley rats were randomly divided into Control, Mechanical ventilation under intubation (1, 3, 6 h) groups, and Spontaneously breathing under intubation (1, 3, 6 h). Lung histopathological injury scores were evaluated. 16SrDNA sequencing was performed to explore respiratory microbiota changes, especially, changes of bacterial count and alteration of bacterial flora. Results: Compared to groups C and SV, critical pathological changes in pulmonary lesions occurred in the MV group after 6 h (p < 0.05). The Alpha diversity and Beta diversity of lower respiratory tract microbiota in MV6, SV6, and C groups were statistically significant (p < 0.05). The main dominant bacterial phyla in the respiratory tract of rats were Proteobacteria, Firmicutes, Bacteroidetes, and Cyanobacteria. Acinetobacter radioresistens in group C was significant, Megaonas in group MV6 was significantly increased, and Parvibacter in group SV6 was significantly increased. Anaerobic, biofilm formation, and Gram-negative bacteria-related functional genes were altered during mechanical ventilation with endotracheal intubation. Conclusion: Mechanical ventilation under intubation may cause dysregulation of lower respiratory microbiota in rats.


Asunto(s)
Lesión Pulmonar , Neumonía , Humanos , Ratas , Animales , Respiración Artificial/efectos adversos , Carga Bacteriana , Ratas Sprague-Dawley , Pulmón/microbiología , Neumonía/etiología , Intubación Intratraqueal/efectos adversos , Bacterias
16.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570700

RESUMEN

The roots of Astilbe grandis, known as "Ma sang gou bang", are used as a Miao traditional medicine with anti-inflammatory and analgesic properties. However, the active components and mechanism of action of this plant remain mostly uncharacterized. The aim of this study was to identify its active components and verify their pharmacological activity. The extract of A. grandis root was separated using various chromatographic methods. As a result, we obtained one novel triterpenoid, named astigranlactone (1), which has an unusual lactone moiety formed between C-7 and C-27. Additionally, a known coumarin compound, 11-O-galloyl bergenin (2) was isolated from this plant. The structures of these two compounds were elucidated by extensive NMR experiments in conjunction with HR-ESI-MS data. To the best of our knowledge, both compounds were isolated from this species for the first time. Moreover, we tested the anti-inflammation effect of the two compounds by establishing a cellular inflammation model induced by LPS in RAW264.7 cells. The effect of different concentrations of these compounds on the activity of RAW264.7 cells was assessed using a CCK8 assay. The levels of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) in the supernatant of each group were evaluated using the Griess method and an enzyme-linked immunosorbent assay (ELISA). Western blot and quantitative real-time PCR (qRT-RCR) were used to measure the levels of cyclooxygenase 2 (COX-2) and nitric oxide synthase (iNOS) gene expression. Our findings revealed that these two compounds inhibited the high levels of NO, TNF-α, IL-6, IL-1ß, COX-2, and iNOS (induced by LPS). Mechanistic studies demonstrated that these two compounds reduced the activation of the nuclear transcription factor-B (NF-κB) signaling pathway by inhibiting the phosphorylation of p65. Therefore, our study indicates that compounds 1 and 2 can exert a definite anti-inflammatory effect by inhibiting the NF-κB signaling pathway.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Macrófagos , Células RAW 264.7 , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Cumarinas/farmacología , Cumarinas/metabolismo , Óxido Nítrico/metabolismo
17.
Front Pharmacol ; 14: 1192970, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324457

RESUMEN

As an essential mediator of inflammation and innate immunity, the receptor-interacting serine/threonine-protein kinase-2 (RIPK2) is responsible for transducing signaling downstream of the intracellular peptidoglycan sensors nucleotide oligomerization domain (NOD)-like receptors 1 and 2 (NOD1/2), which will further activate nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, leading to the transcription activation of pro-inflammatory cytokines and productive inflammatory response. Thus, the NOD2-RIPK2 signaling pathway has attracted extensive attention due to its significant role in numerous autoimmune diseases, making pharmacologic RIPK2 inhibition a promising strategy, but little is known about its role outside the immune system. Recently, RIPK2 has been related to tumorigenesis and malignant progression for which there is an urgent need for targeted therapies. Herein, we would like to evaluate the feasibility of RIPK2 being the anti-tumor drug target and summarize the research progress of RIPK2 inhibitors. More importantly, following the above contents, we will analyze the possibility of applying small molecule RIPK2 inhibitors to anti-tumor therapy.

18.
Front Bioeng Biotechnol ; 11: 1149662, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304135

RESUMEN

Oral squamous cell carcinoma (OSCC) is the most aggressive oral and maxillofacial malignancy with a high incidence and low survival rate. OSCC is mainly diagnosed by tissue biopsy, which is a highly traumatic procedure with poor timeliness. Although there are various options for treating OSCC, most of them are invasive and have unpredictable therapeutic outcomes. Generally, early diagnosis and noninvasive treatment cannot be always satisfied simultaneously in OSCC. Extracellular vesicles (EVs) are involved in intercellular communication. EVs facilitate disease progression and reflect the location and status of the lesions. Therefore, EVs are relatively less invasive diagnostic tools for OSCC. Furthermore, the mechanisms by which EVs are involved in tumorigenesis and tumor treatment have been well studied. This article dissects the involvement of EVs in the diagnosis, development, and treatment of OSCC, providing new insight into the treatment of OSCC by EVs. Different mechanisms, such as inhibiting EV internalization by OSCC cells and constructing engineered vesicles, with potential applications for treating OSCC will be discussed in this review article.

19.
J Ethnopharmacol ; 317: 116763, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37315646

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: As prevalent acute respiratory condition in clinical practice, acute lung injury has a quick start and severe symptoms which can harm patients physically. Chaihu Qingwen granules (CHQW) is a classic formula for the treatment of respiratory diseases. Clinical observation shows that CHQW has good efficacy in treating colds, coughs, and fevers. AIM OF THE STUDY: The aim of this study was to investigate the anti-inflammatory effect of CHQW on lipopolysaccharide (LPS)-induced acute lung injury (ALI) model in rats and to explore its potential mechanism, as well as to clarify its substance composition. MATERIALS AND METHODS: Male SD rats were randomly divided into the blank group, the model group, the ibuprofen group, the Lianhua Qingwen capsule group and the CHQW group (2, 4 and 8 g/kg, respectively). The LPS-induced acute lung injury (ALI) model in rats was established after pre-administration. The histopathological changes in the lung and the levels of inflammatory factors in bronchoalveolar lavage fluid (BALF) and serum of ALI rats were observed. The inflammation-related proteins toll-like receptor 4 (TLR4), inhibitory kappa B alpha (IκBα), phospho-IκBα (p-IκBα), nuclear-factor-kappa B (NF-κB), and NLR family pyrin domain containing 3(NLRP3) expression levels were measured by western blotting analysis and immunohistochemical analysis. The chemical composition of CHQW was identified by liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-Q-TOF-MS). RESULTS: CHQW significantly ameliorated lung tissue pathological injury in LPS-induced ALI rats and decreased the release of inflammatory cytokines (interleukin-1ß, interleukin-17 and tumor necrosis factor-α) in BALF and serum. In addition, CHQW decreased the expression of TLR4, p-IκBα and NF-κB proteins, increased the level of IκBα, regulated the TLR4/NF-κB signaling pathway, and inhibited the activation of NLRP3. The chemical components of CHQW were analyzed by LC-Q-TOF-MS, and a total of 48 components were identified by combining information from the literature, mainly flavonoids, organic acids, lignans, iridoids and phenylethanoid glycosides. CONCLUSION: The results of this study showed that the pretreatment of CHQW had a strong protective effect on LPS-induced ALI in rats, reducing lung tissue lesions and decreasing inflammatory cytokines released in BALF and serum. The protective mechanism of CHQW may be related to the inhibition of the TLR4/NF-κB signaling pathway and NLRP3 activation. The main active ingredients of CHQW are flavonoids, organic acids, lignans, iridoids and phenylethanoid glycosides.


Asunto(s)
Lesión Pulmonar Aguda , FN-kappa B , Ratas , Masculino , Animales , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Inhibidor NF-kappaB alfa , Proteína con Dominio Pirina 3 de la Familia NLR , Lipopolisacáridos/farmacología , Ratas Sprague-Dawley , Pulmón , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Citocinas/metabolismo , Flavonoides/farmacología , Flavonoides/uso terapéutico , Antiinflamatorios/efectos adversos , Glicósidos/farmacología
20.
World J Clin Cases ; 11(11): 2549-2558, 2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37123319

RESUMEN

BACKGROUND: Lichen amyloidosis (LA) is a chronic, severely pruritic skin disease, which is the most common form of primary cutaneous amyloidosis. The treatment of LA has been considered to be difficult. LA may be associated with atopic dermatitis (AD), and in this setting, the treatment options may be more limited. Herein, we report four cases of LA associated with AD successfully treated by dupilumab. CASE SUMMARY: In this article, we describe four cases of patients who presented with recurrent skin rash accompanied by severe generalized intractable pruritus, diagnosed with refractory LA coexisting with chronic AD. Previous treatments had not produced any apparent improvement. Thus, we administered dupilumab injection subcutaneously at a dose of 600 mg for the first time and 300 mg every 2 wk thereafter. Their lesions all markedly improved. CONCLUSION: Dupilumab may be a new useful treatment for LA coexisting with AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA