Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cancer Res ; 84(20): 3388-3401, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39073839

RESUMEN

Cancer cells use multiple mechanisms to evade the effects of glutamine metabolism inhibitors. The pathways that govern responses to alterations in glutamine availability within the tumor may represent therapeutic targets for combinatorial strategies with these inhibitors. Here, we showed that targeting glutamine utilization stimulated Yes-associated protein (YAP) signaling in cancer cells by reducing cyclic adenosine monophosphate/protein kinase A (PKA)-dependent phosphorylation of large tumor suppressor (LATS). Elevated YAP activation induced extracellular matrix (ECM) deposition by increasing the secretion of connective tissue growth factor that promoted the production of fibronectin and collagen by surrounding fibroblasts. Consequently, inhibiting YAP synergized with inhibition of glutamine utilization to effectively suppress tumor growth in vivo, along with a concurrent decrease in ECM deposition. Blocking ECM remodeling also augmented the tumor suppressive effects of the glutamine utilization inhibitor. Collectively, these data reveal mechanisms by which targeting glutamine utilization increases ECM accumulation and identify potential strategies to reduce ECM levels and increase the efficacy of glutamine metabolism inhibitors. Significance: Blocking glutamine utilization activates YAP to promote ECM deposition by fibroblasts, highlighting the potential of YAP inhibitors and antifibrotic strategies as promising approaches for effective combination metabolic therapies in cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Matriz Extracelular , Glutamina , Factores de Transcripción , Proteínas Señalizadoras YAP , Glutamina/metabolismo , Humanos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Animales , Ratones , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Transcripción/metabolismo , Progresión de la Enfermedad , Línea Celular Tumoral , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Femenino , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fibroblastos/metabolismo , Fosforilación
2.
Biochem Biophys Res Commun ; 711: 149921, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38603831

RESUMEN

Artificial sweeteners, which contain no or few calories, have been widely used in various foods and beverages, and are regarded as safe alternatives to sugar by the Food and Drug Administration. While several studies suggest that artificial sweeteners are not related to cancer development, some research has reported their potential association with the risk of cancers, including hepatocellular carcinoma (HCC). Here, we investigated whether acesulfame potassium (Ace K), a commonly used artificial sweetener, induces immune evasion of HCC cells by upregulating programmed death ligand-1 (PD-L1). Ace K elevated the protein levels of PD-L1 in HCC cells without increasing its mRNA levels. The upregulation of PD-L1 protein levels in HCC cells by Ace K was induced by attenuated autophagic degradation of PD-L1, which was mediated by the Ace K-stimulated ERK1/2-mTORC1 signaling pathway. Ace K-induced upregulation of PD-L1 attenuated T cell-mediated death of HCC cells, thereby promoting immune evasion of HCC cells. In summary, the present study suggests that Ace K promotes HCC progression by upregulating the PD-L1 protein level.


Asunto(s)
Autofagia , Antígeno B7-H1 , Carcinoma Hepatocelular , Neoplasias Hepáticas , Tiazinas , Regulación hacia Arriba , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Autofagia/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Tiazinas/farmacología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Línea Celular Tumoral , Edulcorantes/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
3.
Exp Mol Med ; 56(5): 1123-1136, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38689086

RESUMEN

Tumor-associated macrophages (TAMs) are vital contributors to the growth, metastasis, and therapeutic resistance of various cancers, including hepatocellular carcinoma (HCC). However, the exact phenotype of TAMs and the mechanisms underlying their modulation for therapeutic purposes have not been determined. Here, we present compelling evidence that glutamine-derived aspartate in TAMs stimulates spermidine production through the polyamine synthesis pathway, thereby increasing the translation efficiency of HIF-1α via eIF5A hypusination. Consequently, augmented translation of HIF-1α drives TAMs to undergo an increase glycolysis and acquire a metabolic phenotype distinct from that of M2 macrophages. Finally, eIF5A levels in tumor stromal lesions were greater than those in nontumor stromal lesions. Additionally, a higher degree of tumor stromal eIF5A hypusination was significantly associated with a more advanced tumor stage. Taken together, these data highlight the potential of inhibiting hypusinated eIF5A by targeting glutamine metabolism in TAMs, thereby opening a promising avenue for the development of novel therapeutic approaches for HCC.


Asunto(s)
Ácido Aspártico , Carcinoma Hepatocelular , Factor 5A Eucariótico de Iniciación de Traducción , Glutamina , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias Hepáticas , Factores de Iniciación de Péptidos , Proteínas de Unión al ARN , Macrófagos Asociados a Tumores , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Glutamina/metabolismo , Ácido Aspártico/metabolismo , Ácido Aspártico/análogos & derivados , Biosíntesis de Proteínas , Animales , Línea Celular Tumoral , Ratones , Glucólisis , Lisina/análogos & derivados
4.
Clin Proteomics ; 20(1): 45, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875819

RESUMEN

Glioblastoma is one of the most malignant primary brain cancer. Despite surgical resection with modern technology followed by chemo-radiation therapy with temozolomide, resistance to the treatment and recurrence is common due to its aggressive and infiltrating nature of the tumor with high proliferation index. The median survival time of the patients with glioblastomas is less than 15 months. Till now there has been no report of molecular target specific for glioblastomas. Early diagnosis and development of molecular target specific for glioblastomas are essential for longer survival of the patients with glioblastomas. Development of biomarkers specific for glioblastomas is most important for early diagnosis, estimation of the prognosis, and molecular target therapy of glioblastomas. To that end, in this study, we have conducted a comprehensive proteome study using primary cells and tissues from patients with glioblastoma. In the discovery stage, we have identified 7429 glioblastoma-specific proteins, where 476 proteins were quantitated using Tandem Mass Tag (TMT) method; 228 and 248 proteins showed up and down-regulated pattern, respectively. In the validation stage (20 selected target proteins), we developed quantitative targeted method (MRM: Multiple reaction monitoring) using stable isotope standards (SIS) peptide. In this study, five proteins (CCT3, PCMT1, TKT, TOMM34, UBA1) showed the significantly different protein levels (t-test: p value ≤ 0.05, AUC ≥ 0.7) between control and cancer groups and the result of multiplex assay using logistic regression showed the 5-marker panel showed better sensitivity (0.80 and 0.90), specificity (0.92 and 1.00), error rate (10 and 2%), and AUC value (0.94 and 0.98) than the best single marker (TOMM34) in primary cells and tissues, respectively. Although we acknowledge that the model requires further validation in a large sample size, the 5 protein marker panel can be used as baseline data for the discovery of novel biomarkers of the glioblastoma.

5.
Inflamm Res ; 72(10-11): 1981-1997, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37770568

RESUMEN

BACKGROUND: Classically activated M1 macrophages, characterized by aberrant glycolysis and secretion of inflammatory cytokines, play pivotal roles in inflammatory diseases, including inflammatory bowel disease (IBD). Recently, sodium-glucose co-transporter 2 (SGLT2) inhibitors were shown to suppress Na+/H+ exchanger 1 (NHE1) and Na+/Ca2+ exchanger 1 (NCX1) activity, regulating downstream intracellular Ca2+ concentrations in cardiomyocytes. However, whether SGLT2 inhibitors regulate M1 macrophage polarization by downregulating NHE1 and NCX1 remains unknown. METHODS: We analyzed cellular responses to SGLT2 inhibitors using mouse bone marrow-derived macrophages and peritoneal macrophages treated with lipopolysaccharide (LPS). To induce IBD, we used a dextran sulfate sodium salt-induced colitis mouse model. RESULTS: We observed that NHE1 and NCX1 were overexpressed in LPS-treated macrophages, leading to M1 macrophage polarization. Mechanistically, NHE1 and NCX1-mediated Ca2+ accumulation in the macrophage resulted in enhanced glycolysis by promoting PI3K/AKT/mTORC1 signaling. SGLT2 inhibitors suppressed both the expression levels and activities of NHE1 and NCX1, and consequently downregulated PI3K/AKT/mTORC1 signaling and glycolysis in LPS-treated macrophages. We observed inhibition of LPS-stimulated M1 polarization and cytokine production by SGLT2 inhibitors in vitro, ex vivo, and in an IBD mouse model. CONCLUSIONS: NHE1 promotes M1 macrophage polarization and SGLT2 inhibitors are a novel strategy to treat M1 macrophage-mediated inflammatory diseases, including IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Ratones , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Macrófagos/metabolismo , Modelos Animales de Enfermedad , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
6.
Exp Mol Med ; 55(4): 706-715, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37009798

RESUMEN

Proliferating cancer cells rely largely on glutamine for survival and proliferation. Glutamine serves as a carbon source for the synthesis of lipids and metabolites via the TCA cycle, as well as a source of nitrogen for amino acid and nucleotide synthesis. To date, many studies have explored the role of glutamine metabolism in cancer, thereby providing a scientific rationale for targeting glutamine metabolism for cancer treatment. In this review, we summarize the mechanism(s) involved at each step of glutamine metabolism, from glutamine transporters to redox homeostasis, and highlight areas that can be exploited for clinical cancer treatment. Furthermore, we discuss the mechanisms underlying cancer cell resistance to agents that target glutamine metabolism, as well as strategies for overcoming these mechanisms. Finally, we discuss the effects of glutamine blockade on the tumor microenvironment and explore strategies to maximize the utility of glutamine blockers as a cancer treatment.


Asunto(s)
Glutamina , Neoplasias , Humanos , Glutamina/metabolismo , Neoplasias/metabolismo , Aminoácidos/metabolismo , Ciclo del Ácido Cítrico , Oxidación-Reducción , Microambiente Tumoral
7.
J Microbiol ; 60(11): 1086-1094, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36318359

RESUMEN

Fibroblast growth factor 11 (FGF11) is one of intracrine FGFs (iFGFs), which function within cells. Unlike canonical FGFs, FGF11 remains intracellularly and plays biological roles in FGF receptor (FGFR)-independent manner. Here, we established an expression system of recombinant FGF11 proteins in E. coli and investigated whether the extracellular administration of FGF11 can activate cellular signaling. Human FGF11 has two isoforms, FGF11a and FGF11b, depending on the presence of nuclear localization sequences (NLSs) in the N-terminus. Because these two isoforms are unstable, we prepared an FGF11a-Mut by substituting three cysteine residues in the NLS with serine and FGF11b-ΔC with C-terminal truncation. The introduction of mutation in the NLS improved the solubility of FGF11 prepared from E. coli. Exogenous addition of FGF11b and FGF11b-ΔC to BALB3T3 increased cell proliferation, while FGF11a-Mut exerted no effect. FGF11b-ΔC showed higher cell proliferation activity and FGFR signaling than FGF11b. The cell-proliferating activities of FGF11b and FGF11b-ΔC were blocked by an FGFR1 inhibitor or a recombinant FGFR1, confirming the FGFR1-dependent extracellular activity of FGF11b. The analysis of circular dichroism suggested that the C-terminus of FGF11 has an α-helical structure, which may affect its interaction with FGFR1. These results suggest that the N-and C-terminus of recombinant FGF11 are involved in the activation of FGFR1. The above results provide novel insights into the function and mechanism of FGF11 that may aid the development of useful ligands for FGFR regulation.


Asunto(s)
Escherichia coli , Factores de Crecimiento de Fibroblastos , Humanos , Escherichia coli/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/fisiología , Proliferación Celular , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/metabolismo
8.
Endocrinol Metab (Seoul) ; 37(5): 800-809, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36168774

RESUMEN

BACKGRUOUND: Excessive proliferation and migration of vascular smooth muscle cells (VSMCs), which contributes to the development of occlusive vascular diseases, requires elevated mitochondrial oxidative phosphorylation to meet the increased requirements for energy and anabolic precursors. Therefore, therapeutic strategies based on blockade of mitochondrial oxidative phosphorylation are considered promising for treatment of occlusive vascular diseases. Here, we investigated whether DN200434, an orally available estrogen receptor-related gamma inverse agonist, inhibits proliferation and migration of VSMCs and neointima formation by suppressing mitochondrial oxidative phosphorylation. METHODS: VSMCs were isolated from the thoracic aortas of 4-week-old Sprague-Dawley rats. Oxidative phosphorylation and the cell cycle were analyzed in fetal bovine serum (FBS)- or platelet-derived growth factor (PDGF)-stimulated VSMCs using a Seahorse XF-24 analyzer and flow cytometry, respectively. A model of neointimal hyperplasia was generated by ligating the left common carotid artery in male C57BL/6J mice. RESULTS: DN200434 inhibited mitochondrial respiration and mammalian target of rapamycin complex 1 activity and consequently suppressed FBS- or PDGF-stimulated proliferation and migration of VSMCs and cell cycle progression. Furthermore, DN200434 reduced carotid artery ligation-induced neointima formation in mice. CONCLUSION: Our data suggest that DN200434 is a therapeutic option to prevent the progression of atherosclerosis.


Asunto(s)
Aterosclerosis , Neointima , Ratas , Ratones , Masculino , Animales , Neointima/prevención & control , Neointima/tratamiento farmacológico , Neointima/metabolismo , Músculo Liso Vascular/metabolismo , Ratones Endogámicos C57BL , Proliferación Celular , Ratas Sprague-Dawley , Células Cultivadas , Arteria Carótida Común/metabolismo , Arterias Carótidas/cirugía , Arterias Carótidas/metabolismo , Mamíferos
9.
BMB Rep ; 55(11): 547-552, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36016501

RESUMEN

Sorafenib, originally identified as an inhibitor of multiple oncogenic kinases, induces ferroptosis in hepatocellular carcinoma (HCC) cells. Several pathways that mitigate sorafenib-induced ferroptosis confer drug resistance; thus strategies that enhance ferroptosis increase sorafenib efficacy. Orphan nuclear receptor estrogen-related receptor γ (ERRγ) is upregulated in human HCC tissues and plays a role in cancer cell proliferation. The aim of this study was to determine whether inhibition of ERRγ with DN200434, an orally available inverse agonist, can overcome resistance to sorafenib through induction of ferroptosis. Sorafenib-resistant HCC cells were less sensitive to sorafenibinduced ferroptosis and showed significantly higher ERRγ levels than sorafenib-sensitive HCC cells. DN200434 induced lipid peroxidation and ferroptosis in sorafenib-resistant HCC cells. Mechanistically, DN200434 increased mitochondrial ROS generation by reducing glutathione/glutathione disulfide levels, which subsequently reduced mTOR activity and GPX4 levels. DN200434 induced amplification of the antitumor effects of sorafenib was confirmed in a tumor xenograft model. The present results indicate that DN200434 may be a novel therapeutic strategy to re-sensitize HCC cells to sorafenib. [BMB Reports 2022; 55(11): 547-552].


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Sorafenib/farmacología , Sorafenib/uso terapéutico , Neoplasias Hepáticas/metabolismo , Estrógenos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos
10.
BMB Rep ; 55(9): 459-464, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35651333

RESUMEN

Various mechanisms have been suggested to explain the chemopreventive and tumor-inhibitory effects of melatonin. Despite the growing evidence supporting melatonin-induced mitochondrial dysfunction, it remains largely unknown how this phenomenon modulates metabolic reprogramming in cancer cells. The aim of our study was to identify the mechanism underlying the anti-proliferative and apoptotic effects of melatonin, which is known to inhibit glycolysis. We analyzed the time-dependent effects of melatonin on mitochondrial respiration and glycolysis in liver cancer cells. The results showed that from a cell bioenergetic point of view, melatonin caused an acute reduction in mitochondrial respiration, however, increased reactive oxygen species production, thereby inhibiting mTORC1 activity from an early stage post-treatment without affecting glycolysis. Nevertheless, administration of melatonin for a longer time reduced expression of c-Myc protein, thereby suppressing glycolysis via downregulation of HK2 and LDHA. The data presented herein suggest that melatonin suppresses mitochondrial respiration and glycolysis simultaneously in HCC cells, leading to anti-cancer effects. Thus, melatonin can be used as an adjuvant agent for therapy of liver cancer. [BMB Reports 2022; 55(9): 459-464].


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Melatonina , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Glucólisis , Humanos , Neoplasias Hepáticas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Respiración
11.
J Med Chem ; 65(7): 5751-5759, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35319890

RESUMEN

Immunoglobulin Gs (IgGs) contain many Lys and Cys residues, which results in an unwanted complex product mixture with conventional drug conjugation methods. We selectively acylated the ε-NH2 of K248 on trastuzumab using an IgG Fc-binding peptide (FcBP) equipped with a 5-norbornene-2-carboxylic acid thioester (AbClick-1). AbClick-1 locates its thioester close to the ε-NH2 of K248 while binding to trastuzumab. Consequently, the thioester underwent proximity-driven selective acylation of ε-NH2 through an S to N acyl transfer reaction. Furthermore, N-tert-butyl maleimide accelerated the cross-linking reaction with an approximately 95% yield of the desired product by scavenging the byproduct (FcBP-SH). Only K248 was modified selectively with the 5-norbornene-2-carbonyl group, which was further modified by click reaction to afford an antibody-drug conjugate (ADC) with two drugs per antibody. The resulting ADCs showed remarkable in vitro and in vivo anticancer activity. Our results demonstrate that a thioester is a promising chemical entity for proximity-driven site-selective conjugation of antibodies.


Asunto(s)
Inmunoconjugados , Inmunoconjugados/química , Péptidos , Trastuzumab/química
12.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35163619

RESUMEN

Classically activated M1 macrophages reprogram their metabolism towards enhanced glycolysis to obtain energy and produce pro-inflammatory cytokines after activation by mammalian target of rapamycin complex 1 (mTORC1) and hypoxia-inducible factor (HIF)-1α. Thus, a strategy that constrains M1 polarization of macrophages via downregulation of glycolysis is essential for treating chronic inflammatory diseases. Cassiae semen has pharmacological activity against various inflammatory diseases. However, it is unclear whether specific compounds within Cassia seeds affect M1 polarization of macrophages. Here, we investigated whether Cassiaside C napthopyrone from Cassiae semen inhibits M1 polarization by downregulating glycolysis. We found that Cassiaside C reduced expression of inducible nitric oxide synthase and cyclooxygenase-2 and the phosphorylation of nuclear factor kappa B, all of which are upregulated in lipopolysaccharide (LPS)/interferon (IFN)-γ-treated Raw264.7 cells and peritoneal macrophages. Moreover, Cassiaside C-treated macrophages showed marked suppression of LPS/IFN-γ-induced HIF-1α, pyruvate dehydrogenase kinase 1, and lactate dehydrogenase A expression, along with downregulation of the phosphoinositide 3-kinases (PI3K)/AKT/mTORC1 signaling pathway. Consequently, Cassiaside C attenuated enhanced glycolysis and lactate production, but rescued diminished oxidative phosphorylation, in M1 polarized macrophages. Thus, Cassiaside C dampens M1 polarization of macrophages by downregulating glycolysis, which could be exploited as a therapeutic strategy for chronic inflammatory conditions.


Asunto(s)
Polaridad Celular , Glucólisis , Glicósidos , Activación de Macrófagos , Macrófagos , Animales , Ratones , Regulación de la Expresión Génica , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células RAW 264.7 , Transducción de Señal , Polaridad Celular/efectos de los fármacos , Glicósidos/farmacología
13.
Int J Mol Sci ; 22(11)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070527

RESUMEN

Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the development of atherosclerosis and restenosis. Glycolysis and glutaminolysis are increased in rapidly proliferating VSMCs to support their increased energy requirements and biomass production. Thus, it is essential to develop new pharmacological tools that regulate metabolic reprogramming in VSMCs for treatment of atherosclerosis. The effects of 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist, have been broadly investigated in highly proliferative cells; however, it is unclear whether DON inhibits proliferation of VSMCs and neointima formation. Here, we investigated the effects of DON on neointima formation in vivo as well as proliferation and migration of VSMCs in vitro. DON simultaneously inhibited FBS- or PDGF-stimulated glycolysis and glutaminolysis as well as mammalian target of rapamycin complex I activity in growth factor-stimulated VSMCs, and thereby suppressed their proliferation and migration. Furthermore, a DON-derived prodrug, named JHU-083, significantly attenuated carotid artery ligation-induced neointima formation in mice. Our results suggest that treatment with a glutamine antagonist is a promising approach to prevent progression of atherosclerosis and restenosis.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diazooxonorleucina/farmacología , Glutamina/antagonistas & inhibidores , Glucólisis/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Neointima/tratamiento farmacológico , Fosforilación Oxidativa/efectos de los fármacos , Animales , Antimetabolitos Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos , Células Cultivadas , Diazooxonorleucina/análogos & derivados , Glutamina/metabolismo , Inmunohistoquímica , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Ratas , Ratas Sprague-Dawley , Albúmina Sérica Bovina/farmacología
14.
Biochem Biophys Res Commun ; 560: 45-51, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-33965788

RESUMEN

Rapidly proliferating cells such as vascular smooth muscle cells (VSMCs) require metabolic programs to support increased energy and biomass production. Thus, targeting glutamine metabolism by inhibiting glutamine transport could be a promising strategy for vascular disorders such as atherosclerosis, stenosis, and restenosis. V-9302, a competitive antagonist targeting the glutamine transporter, has been investigated in the context of cancer; however, its role in VSMCs is unclear. Here, we examined the effects of blocking glutamine transport in fetal bovine serum (FBS)- or platelet-derived growth factor (PDGF)-stimulated VSMCs using V-9302. We found that V-9302 inhibited mTORC1 activity and mitochondrial respiration, thereby suppressing FBS- or PDGF-stimulated proliferation and migration of VSMCs. Moreover, V-9302 attenuated carotid artery ligation-induced neointima in mice. Collectively, the data suggest that targeting glutamine transport using V-9302 is a promising therapeutic strategy to ameliorate occlusive vascular disease.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Neointima/tratamiento farmacológico , Sistema de Transporte de Aminoácidos A/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos A/metabolismo , Animales , Arterias Carótidas/cirugía , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , Ligadura , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/etiología , Neointima/patología , Factor de Crecimiento Derivado de Plaquetas/farmacología , Ratas Sprague-Dawley , Albúmina Sérica Bovina/farmacología
15.
ACS Omega ; 5(40): 25798-25809, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33073104

RESUMEN

c-Met, as a receptor expressed on the cell membrane, contributes to the growth and metastasis of tumors, as well as angiogenesis, mainly through the hepatocyte growth factor (HGF)/c-Met axis during tumor progression. Although several c-Met inhibitors, including small molecules and monoclonal antibody inhibitors, are currently being investigated, their clinical outcomes have not been promising. Development of an antibody-drug conjugate (ADC) against c-Met could be an attractive therapeutic strategy that would provide superior antitumor efficacy with broad-spectrum c-Met expression levels. In the present study, site-specific drug-conjugate technology was applied to develop an ADC using the human-mouse cross-reactive c-Met antibody and a prodrug pyrrolobenzodiazepine (PBD). The toxin payload was uniformly conjugated to the light-chain C-terminus of the native cIRCR201 antibody (drug-to-antibody ratio = 2), as confirmed using LC-MS. Using a high-throughput screening system, we found that cIRCR201-dPBD exhibited varying sensitivities depending on the expression levels of c-Met, and it induced receptor-mediated endocytosis and toxin-mediated apoptosis in 47 different cancer cell lines. cIRCR201-dPBD also showed significant antitumor activity on the MET-amplified cancer cells using in vivo xenograft models. Therefore, cIRCR201-dPBD could be a promising therapeutic strategy for tumors with c-Met expression.

16.
Clin Biochem ; 56: 55-61, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29654727

RESUMEN

OBJECTIVES: Malignant ascites is a sign of peritoneal seeding, which is one of the most frequent forms of incurable distant metastasis. Because the development of malignant ascites is associated with an extremely poor prognosis, determining whether it resulted from peritoneal seeding has critical clinical implications in diagnosis, choice of treatment, and active surveillance. At present, the molecular characterizations of malignant ascites are especially limited in case of gastric cancer. We aimed to identify malignant ascites-specific proteins that may contribute to the development of alternative methods for diagnosis and therapeutic monitoring and also increase our understanding of the pathophysiology of peritoneal seeding. DESIGN & METHODS: First, comprehensive proteomic strategies were employed to construct an in-depth proteome of ascitic fluids. Label-free quantitative proteomic analysis was subsequently performed to identify candidates that can differentiate between malignant ascitic fluilds of gastric cancer patients from benign ascitic fluids. Finally, two candidate proteins were verified by ELISA in 84 samples with gastric cancer or liver cirrhosis. RESULTS: Comprehensive proteome profiling resulted in the identification of 5347 ascites proteins. Using label-free quantification, we identified 299 proteins that were differentially expressed in ascitic fluids between liver cirrhosis and stage IV gastric cancer patients. In addition, we identified 645 proteins that were significantly expressed in ascitic fluids between liver cirrhosis and gastric cancer patients with peritoneal seeding. Finally, Gastriscin and Periostin that can distinguish malignant ascites from benign ascites were verified by ELISA. CONCLUSIONS: This study identified and verified protein markers that can distinguish malignant ascites with or without peritoneal seeding from benign ascites. Consequently, our results could be a significant resource for gastric cancer research and biomarker discovery in the diagnosis of malignant ascites.


Asunto(s)
Ascitis/etiología , Líquido Ascítico/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Neoplasias Peritoneales/metabolismo , Proteoma/metabolismo , Neoplasias Gástricas/metabolismo , Biomarcadores de Tumor/metabolismo , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Estudios de Cohortes , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/fisiopatología , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Siembra Neoplásica , Estadificación de Neoplasias , Pepsinógeno C/química , Pepsinógeno C/genética , Pepsinógeno C/metabolismo , Mapeo Peptídico , Neoplasias Peritoneales/diagnóstico , Neoplasias Peritoneales/fisiopatología , Neoplasias Peritoneales/secundario , Análisis de Componente Principal , Proteoma/genética , Proteómica/métodos , Sensibilidad y Especificidad , Estómago/patología , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patología , Neoplasias Gástricas/fisiopatología
17.
PLoS One ; 11(5): e0156296, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27231876

RESUMEN

Human vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis and plays a central role in the process of tumor growth and metastatic dissemination. Escherichia coli is one of the most common expression systems used for the production of recombinant proteins; however, expression of human VEGF in E. coli has proven difficult because the E. coli-expressed VEGF tends to be misfolded and forms inclusion bodies, resulting in poor solubility. In this study, we successfully produced semi-preparative amounts of soluble bioactive human VEGF165 (hVEGF). We created seven N-terminal fusion tag constructs with hexahistidine (His6), thioredoxin (Trx), glutathione S-transferase (GST), maltose-binding protein (MBP), N-utilization substance protein A (NusA), human protein disulfide isomerase (PDI), and the b'a' domain of PDI (PDIb'a'), and tested each construct for soluble overexpression in E. coli. We found that at 18°C, 92.8% of the MBP-tagged hVEGF to be soluble and that this tag significantly increased the protein's solubility. We successfully purified 0.8 mg of pure hVEGF per 500 mL cell culture. The purified hVEGF is stable after tag cleavage, contains very low levels of endotoxin, and is 97.6% pure. Using an Flk1+ mesodermal precursor cell (MPC) differentiation assay, we show that the purified hVEGF is not only bioactive but has similar bioactivity to hVEGF produced in mammalian cells. Previous reports on producing hVEGF in E. coli have all been based on refolding of the protein from inclusion bodies. To our knowledge, this is the first report on successfully expressing and purifying soluble hVEGF in E. coli.


Asunto(s)
Escherichia coli/genética , Proteínas de Unión a Maltosa/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/aislamiento & purificación , Animales , Células CHO , Cricetinae , Cricetulus , Expresión Génica , Humanos , Plásmidos/genética , Proteínas Recombinantes de Fusión/química , Solubilidad , Factor A de Crecimiento Endotelial Vascular/química
18.
Mol Cells ; 37(12): 888-98, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25518923

RESUMEN

Pancreatic cancer is one of the most fatal cancers and is associated with limited diagnostic and therapeutic modalities. Currently, gemcitabine is the only effective drug and represents the preferred first-line treatment for chemotherapy. However, a high level of intrinsic or acquired resistance of pancreatic cancer to gemcitabine can contribute to the failure of gemcitabine treatment. To investigate the underlying molecular mechanisms for gemcitabine resistance in pancreatic cancer, we performed label-free quantification of protein expression in intrinsic gemcitabine-resistant and - sensitive human pancreatic adenocarcinoma cell lines using our improved proteomic strategy, combined with filter-aided sample preparation, single-shot liquid chromatography-mass spectrometry, enhanced spectral counting, and a statistical method based on a power law global error model. We identified 1931 proteins and quantified 787 differentially expressed proteins in the BxPC3, PANC-1, and HPDE cell lines. Bioinformatics analysis identified 15 epithelial to mesenchymal transition (EMT) markers and 13 EMT-related proteins that were closely associated with drug resistance were differentially expressed. Interestingly, 8 of these proteins were involved in glutathione and cysteine/methionine metabolism. These results suggest that proteins related to the EMT and glutathione metabolism play important roles in the development of intrinsic gemcitabine resistance by pancreatic cancer cell lines.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteómica/métodos , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Glutatión/metabolismo , Humanos , Espectrometría de Masas , Neoplasias Pancreáticas/genética , Gemcitabina
19.
PLoS One ; 9(10): e110366, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25310463

RESUMEN

Serum alpha-fetoprotein (AFP) has long been used as a diagnostic marker for hepatocellular carcinoma (HCC), albeit controversially. Although it remains widely used in clinics, the value of AFP in HCC diagnosis has recently been challenged due to its significant rates of false positive and false negative findings. To improve the efficacy of AFP as HCC diagnostic marker, we developed a method of measuring total and glycosylated AFP by multiple reaction monitoring (MRM)-MS. In this study, we verified the total amount of AFP (nonglycopeptide levels) and the degree of glycosylated AFP (deglycopeptide levels) in 60 normal (41 men and 19 women; mean age 53 years; range 32-74 years), 35 LC (23 men and 12 women; mean age 56 years; range 43-78 years; HBV-related), and 60 HCC subjects (42 men and 18 women; mean age 58 years; range 38-76 years; HBV-related; 30 stage I, 15 stage II, and 10 stage III). By MRM-MS analysis, the nonglycopeptide had 56.7% sensitivity, 68.3% specificity, and an AUC of 0.687 [cutoff value: ≥0.02 (light/heavy ratio)], comparing the normal and HCC group, whereas the deglycopeptide had 93.3% sensitivity, 68.3% specificity, and an AUC of 0.859 [cutoff value: ≥0.02 (light/heavy ratio)]. In comparing the stage I HCC subgroup with the LC group, the nonglycopeptide had a sensitivity of 66.7%, specificity of 80.0%, and an AUC of 0.712 [cutoff value: ≥0.02 (light/heavy ratio)], whereas the deglycopeptide had a sensitivity of 96.7%, specificity of 80.0%, and an AUC of 0.918 [cutoff value: ≥0.02 (light/heavy ratio)]. These data demonstrate that the discriminatory power of the deglycopeptide is greater than that of the nonglycopeptide. We conclude that deglycopeptide can distinguish cancer status between normal subjects and HCC patients better than nonglycopeptide.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , alfa-Fetoproteínas/metabolismo , Adulto , Anciano , Biomarcadores de Tumor , Carcinoma Hepatocelular/terapia , Femenino , Glicopéptidos/sangre , Glicosilación , Humanos , Neoplasias Hepáticas/terapia , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Curva ROC , Carga Tumoral , alfa-Fetoproteínas/química
20.
Mol Cells ; 37(6): 457-66, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24805778

RESUMEN

Proteomic analysis is helpful in identifying cancer-associated proteins that are differentially expressed and fragmented that can be annotated as dysregulated networks and pathways during metastasis. To examine meta-static process in lung cancer, we performed a proteomics study by label-free quantitative analysis and N-terminal analysis in 2 human non-small-cell lung cancer cell lines with disparate metastatic potentials-NCI--H1703 (primary cell, stage I) and NCI-H1755 (metastatic cell, stage IV). We identified 2130 proteins, 1355 of which were common to both cell lines. In the label-free quantitative analysis, we used the NSAF normalization method, resulting in 242 differential expressed proteins. For the N-terminal proteome analysis, 325 N-terminal peptides, including 45 novel fragments, were identified in the 2 cell lines. Based on two proteomic analysis, 11 quantitatively expressed proteins and 8 N-terminal peptides were enriched for the focal adhesion pathway. Most proteins from the quantitative analysis were upregulated in metastatic cancer cells, whereas novel fragment of CRKL was detected only in primary cancer cells. This study increases our understanding of the NSCLC metastasis proteome.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Metástasis de la Neoplasia/genética , Proteínas de Neoplasias/metabolismo , Péptidos/metabolismo , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Adhesiones Focales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos/química , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA