Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Clin Endocrinol Metab ; 106(5): 1312-1324, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33560372

RESUMEN

CONTEXT: Mitochondria are essential for cellular energy homeostasis, yet their role in subcutaneous adipose tissue (SAT) during different types of weight-loss interventions remains unknown. OBJECTIVE: To investigate how SAT mitochondria change following diet-induced and bariatric surgery-induced weight-loss interventions in 4 independent weight-loss studies. METHODS: The DiOGenes study is a European multicenter dietary intervention with an 8-week low caloric diet (LCD; 800 kcal/d; n = 261) and 6-month weight-maintenance (n = 121) period. The Kuopio Obesity Surgery study (KOBS) is a Roux-en-Y gastric bypass (RYGB) surgery study (n = 172) with a 1-year follow-up. We associated weight-loss percentage with global and 2210 mitochondria-related RNA transcripts in linear regression analysis adjusted for age and sex. We repeated these analyses in 2 studies. The Finnish CRYO study has a 6-week LCD (800-1000 kcal/d; n = 19) and a 10.5-month follow-up. The Swedish DEOSH study is a RYGB surgery study with a 2-year (n = 49) and 5-year (n = 37) follow-up. RESULTS: Diet-induced weight loss led to a significant transcriptional downregulation of oxidative phosphorylation (DiOGenes; ingenuity pathway analysis [IPA] z-scores: -8.7 following LCD, -4.4 following weight maintenance; CRYO: IPA z-score: -5.6, all P < 0.001), while upregulation followed surgery-induced weight loss (KOBS: IPA z-score: 1.8, P < 0.001; in DEOSH: IPA z-scores: 4.0 following 2 years, 0.0 following 5 years). We confirmed an upregulated oxidative phosphorylation at the proteomics level following surgery (IPA z-score: 3.2, P < 0.001). CONCLUSIONS: Differentially regulated SAT mitochondria-related gene expressions suggest qualitative alterations between weight-loss interventions, providing insights into the potential molecular mechanistic targets for weight-loss success.


Asunto(s)
Tejido Adiposo/metabolismo , Genes Mitocondriales/genética , Pérdida de Peso/fisiología , Adulto , Cirugía Bariátrica , Dieta Reductora , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Masculino , Redes y Vías Metabólicas/genética , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/metabolismo , Obesidad Mórbida/dietoterapia , Obesidad Mórbida/genética , Obesidad Mórbida/cirugía , Estudios Retrospectivos , Pérdida de Peso/genética , Programas de Reducción de Peso
2.
Hum Mol Genet ; 25(4): 706-14, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26681804

RESUMEN

Mitochondria are dynamic organelles that divide and fuse by remodeling an outer and inner membrane in response to developmental, physiological and stress stimuli. These events are coordinated by conserved dynamin-related GTPases. The dynamics of mitochondrial morphology require coordination with mitochondrial DNA (mtDNA) to ensure faithful genome transmission, however, this process remains poorly understood. Mitochondrial division is linked to the segregation of mtDNA but how it affects cases of mtDNA heteroplasmy, where two or more mtDNA variants/mutations co-exist in a cell, is unknown. Segregation of heteroplasmic human pathogenic mtDNA mutations is a critical factor in the onset and severity of human mitochondrial diseases. Here, we investigated the coupling of mitochondrial morphology to the transmission and segregation of mtDNA in mammals by taking advantage of two genetically modified mouse models: one with a dominant-negative mutation in the dynamin-related protein 1 (Drp1 or Dnm1l) that impairs mitochondrial fission and the other, heteroplasmic mice segregating two neutral mtDNA haplotypes (BALB and NZB). We show a tissue-specific response to mtDNA segregation from a defect in mitochondrial fission. Only mtDNA segregation in the hematopoietic compartment is modulated from impaired Dnm1l function. In contrast, no effect was observed in other tissues arising from the three germ layers during development and in mtDNA transmission through the female germline. Our data suggest a robust organization of a heteroplasmic mtDNA segregating unit across mammalian cell types that can overcome impaired mitochondrial division to ensure faithful transmission of the mitochondrial genome.


Asunto(s)
ADN Mitocondrial/fisiología , Mitocondrias/fisiología , Dinámicas Mitocondriales/fisiología , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Femenino , Haplotipos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NZB , Mitocondrias/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Modelos Animales
3.
Genetics ; 200(1): 221-35, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25808953

RESUMEN

Mammalian mitochondrial DNA (mtDNA) is a high-copy maternally inherited genome essential for aerobic energy metabolism. Mutations in mtDNA can lead to heteroplasmy, the co-occurence of two different mtDNA variants in the same cell, which can segregate in a tissue-specific manner affecting the onset and severity of mitochondrial dysfunction. To investigate mechanisms regulating mtDNA segregation we use a heteroplasmic mouse model with two polymorphic neutral mtDNA haplotypes (NZB and BALB) that displays tissue-specific and age-dependent selection for mtDNA haplotypes. In the hematopoietic compartment there is selection for the BALB mtDNA haplotype, a phenotype that can be modified by allelic variants of Gimap3. Gimap3 is a tail-anchored member of the GTPase of the immunity-associated protein (Gimap) family of protein scaffolds important for leukocyte development and survival. Here we show how the expression of two murine Gimap3 alleles from Mus musculus domesticus and M. m. castaneus differentially affect mtDNA segregation. The castaneus allele has incorporated a uORF (upstream open reading frame) in-frame with the Gimap3 mRNA that impairs translation and imparts a negative effect on the steady-state protein abundance. We found that quantitative changes in the expression of Gimap3 and the paralogue Gimap5, which encodes a lysosomal protein, affect mtDNA segregation in the mouse hematopoietic tissues. We also show that Gimap3 localizes to the endoplasmic reticulum and not mitochondria as previously reported. Collectively these data show that the abundance of protein scaffolds on the endoplasmic reticulum and lysosomes are important to the segregation of the mitochondrial genome in the mouse hematopoietic compartment.


Asunto(s)
ADN Mitocondrial/genética , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Proteínas de la Membrana/genética , Células 3T3 , Alelos , Secuencia de Aminoácidos , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Haplotipos , Linfocitos/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Transporte de Proteínas
4.
PLoS Genet ; 6(10): e1001161, 2010 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-20976251

RESUMEN

Mitochondrial DNA (mtDNA) sequence variants segregate in mutation and tissue-specific manners, but the mechanisms remain unknown. The segregation pattern of pathogenic mtDNA mutations is a major determinant of the onset and severity of disease. Using a heteroplasmic mouse model, we demonstrate that Gimap3, an outer mitochondrial membrane GTPase, is a critical regulator of this process in leukocytes. Gimap3 is important for T cell development and survival, suggesting that leukocyte survival may be a key factor in the genetic regulation of mtDNA sequence variants and in modulating human mitochondrial diseases.


Asunto(s)
ADN Mitocondrial/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Haplotipos/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Embrión de Mamíferos/citología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Sistema Hematopoyético/metabolismo , Humanos , Riñón/metabolismo , Leucocitos/citología , Leucocitos/metabolismo , Hígado/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Bazo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA