Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Oncogenesis ; 11(1): 2, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022385

RESUMEN

Circumventing chemoresistance is crucial for effectively treating cancer including glioblastoma, a lethal brain cancer. The gap junction protein connexin 43 (Cx43) renders glioblastoma resistant to chemotherapy; however, targeting Cx43 is difficult because mechanisms underlying Cx43-mediated chemoresistance remain elusive. Here we report that Cx43, but not other connexins, is highly expressed in a subpopulation of glioblastoma and Cx43 mRNA levels strongly correlate with poor prognosis and chemoresistance in this population, making Cx43 the prime therapeutic target among all connexins. Depleting Cx43 or treating cells with αCT1-a Cx43 peptide inhibitor that sensitizes glioblastoma to the chemotherapy temozolomide-inactivates phosphatidylinositol-3 kinase (PI3K), whereas overexpression of Cx43 activates this signaling. Moreover, αCT1-induced chemo-sensitization is counteracted by a PI3K active mutant. Further research reveals that αCT1 inactivates PI3K without blocking the release of PI3K-activating molecules from membrane channels and that Cx43 selectively binds to the PI3K catalytic subunit ß (PIK3CB, also called PI3Kß or p110ß), suggesting that Cx43 activates PIK3CB/p110ß independent of its channel functions. To explore the therapeutic potential of simultaneously targeting Cx43 and PIK3CB/p110ß, αCT1 is combined with TGX-221 or GSK2636771, two PIK3CB/p110ß-selective inhibitors. These two different treatments synergistically inactivate PI3K and sensitize glioblastoma cells to temozolomide in vitro and in vivo. Our study has revealed novel mechanistic insights into Cx43/PI3K-mediated temozolomide resistance in glioblastoma and demonstrated that targeting Cx43 and PIK3CB/p110ß together is an effective therapeutic approach for overcoming chemoresistance.

2.
Elife ; 72018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30106376

RESUMEN

Computational modeling indicates that cardiac conduction may involve ephaptic coupling - intercellular communication involving electrochemical signaling across narrow extracellular clefts between cardiomyocytes. We hypothesized that ß1(SCN1B) -mediated adhesion scaffolds trans-activating NaV1.5 (SCN5A) channels within narrow (<30 nm) perinexal clefts adjacent to gap junctions (GJs), facilitating ephaptic coupling. Super-resolution imaging indicated preferential ß1 localization at the perinexus, where it co-locates with NaV1.5. Smart patch clamp (SPC) indicated greater sodium current density (INa) at perinexi, relative to non-junctional sites. A novel, rationally designed peptide, ßadp1, potently and selectively inhibited ß1-mediated adhesion, in electric cell-substrate impedance sensing studies. ßadp1 significantly widened perinexi in guinea pig ventricles, and selectively reduced perinexal INa, but not whole cell INa, in myocyte monolayers. In optical mapping studies, ßadp1 precipitated arrhythmogenic conduction slowing. In summary, ß1-mediated adhesion at the perinexus facilitates action potential propagation between cardiomyocytes, and may represent a novel target for anti-arrhythmic therapies.


Asunto(s)
Arritmias Cardíacas/tratamiento farmacológico , Comunicación Celular/genética , Uniones Comunicantes/ultraestructura , Miocitos Cardíacos/fisiología , Potenciales de Acción , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Adhesión Celular/genética , Adhesión Celular/fisiología , Comunicación Celular/fisiología , Biología Computacional , Impedancia Eléctrica , Uniones Comunicantes/fisiología , Cobayas , Humanos , Ratones , Modelos Cardiovasculares , Miocitos Cardíacos/ultraestructura , Canal de Sodio Activado por Voltaje NAV1.5/genética , Técnicas de Placa-Clamp , Péptidos/química , Sodio/metabolismo , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética
3.
Cancer Res ; 76(1): 139-49, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26542214

RESUMEN

Resistance of glioblastoma (GBM) to the front-line chemotherapeutic agent temozolomide (TMZ) continues to challenge GBM treatment efforts. The repair of TMZ-induced DNA damage by O-6-methylguanine-DNA methyltransferase (MGMT) confers one mechanism of TMZ resistance. Paradoxically, MGMT-deficient GBM patients survive longer despite still developing resistance to TMZ. Recent studies indicate that the gap junction protein connexin 43 (Cx43) renders GBM cells resistant to TMZ through its carboxyl terminus (CT). In this study, we report insights into how Cx43 promotes TMZ resistance. Cx43 levels were inversely correlated with TMZ sensitivity of GBM cells, including GBM stem cells. Moreover, Cx43 levels inversely correlated with patient survival, including as observed in MGMT-deficient GBM patients. Addition of the C-terminal peptide mimetic αCT1, a selective inhibitor of Cx43 channels, sensitized human MGMT-deficient and TMZ-resistant GBM cells to TMZ treatment. Moreover, combining αCT1 with TMZ-blocked AKT/mTOR signaling, induced autophagy and apoptosis in TMZ-resistant GBM cells. Our findings suggest that Cx43 may offer a biomarker to predict the survival of patients with MGMT-independent TMZ resistance and that combining a Cx43 inhibitor with TMZ could enhance therapeutic responses in GBM, and perhaps other TMZ-resistant cancers.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Materiales Biomiméticos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Conexina 43/antagonistas & inhibidores , Dacarbazina/análogos & derivados , Glioblastoma/tratamiento farmacológico , Péptidos/farmacología , Animales , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Conexina 43/metabolismo , Dacarbazina/administración & dosificación , Dacarbazina/farmacología , Sinergismo Farmacológico , Glioblastoma/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Péptidos/administración & dosificación , Transducción de Señal , Temozolomida , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Am J Physiol Heart Circ Physiol ; 300(2): H583-94, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21131473

RESUMEN

The disruption of the spatial order of electromechanical junctions at myocyte-intercalated disks (ICDs) is a poorly understood characteristic of many cardiac disease states. Here, in vitro and in vivo evidence is provided that zonula occludens-1 (ZO-1) regulates the organization of gap junctions (GJs) and adherens junctions (AJs) at ICDs. We investigated the contribution of ZO-1 to cell-cell junction localization by expressing a dominant-negative ZO-1 construct (DN-ZO-1) in rat ventricular myocytes (VMs). The expression of DN-ZO-1 in cultured neonatal VMs for 72 h reduced the interaction of ZO-1 and N-cadherin, as assayed by colocalization and coimmunoprecipitation, prompting cytoplasmic internalization of AJ and GJ proteins. DN-ZO-1 expression in adult VMs in vivo also reduced N-cadherin colocalization with ZO-1, a phenomenon not observed when the connexin-43 (Cx43)-ZO-1 interaction was disrupted using a mimetic of the ZO-1-binding ligand from Cx43. DN-ZO-1-infected VMs demonstrated large GJs at the ICD periphery and showed a loss of focal ZO-1 concentrations along plaque edges facing the disk interior. Additionally, there was breakdown of the characteristic ICD pattern of small interior and large peripheral GJs. Continuous DN-ZO-1 expression in VMs over postnatal development reduced ICD-associated Cx43 GJs and increased lateralized and cytoplasmic Cx43. We conclude that ZO-1 regulation of GJ localization is via an association with the N-cadherin multiprotein complex and that this is a key determinant of stable localization of both AJs and GJs at the ICD.


Asunto(s)
Uniones Adherentes/ultraestructura , Uniones Comunicantes/ultraestructura , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/ultraestructura , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Recién Nacidos , Cadherinas/metabolismo , Separación Celular , Células Cultivadas , Conexina 43/metabolismo , Citoplasma/metabolismo , Dependovirus/genética , Femenino , Vectores Genéticos , Ventrículos Cardíacos/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunoprecipitación , Proteínas de la Membrana/genética , Microscopía Confocal , Fosfoproteínas/genética , Ratas , Ratas Sprague-Dawley , Proteína de la Zonula Occludens-1
5.
Dev Dyn ; 237(6): 1746-53, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18489007

RESUMEN

The spatiotemporal distribution of the endothelin-converting enzyme (ECE) protein in the embryonic chick heart and the association of this polypeptide with the developing cardiac conduction system is described here for the first time. Further, we show how cardiac hemodynamic load directly affects ECE level and distribution. Endothelin (ET) is a cytokine involved in the inductive recruitment of Purkinje fibers. ET is produced by proteolytic cleavage of Big-ET by ECE. We generated an antibody against chick ECE recognizing a single band at approximately 70 kD to correlate the cardiac expression of this protein with that reported previously for its mRNA. ECE protein expression was more widespread compared to its mRNA, being present in endothelial cells, mesenchymal cells, and myocytes, and particularly enriched in the trabeculae and nascent ventricular conduction system. The myocardial expression was significantly modified under experimentally altered hemodynamic loading. In vivo, ET receptor blockade with bosentan delayed activation sequence maturation. These data support a role for ECE in avian cardiac conduction system differentiation and maturation.


Asunto(s)
Ácido Aspártico Endopeptidasas/biosíntesis , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Metaloendopeptidasas/biosíntesis , Animales , Bosentán , Embrión de Pollo , Enzimas Convertidoras de Endotelina , Endotelinas/metabolismo , Hemodinámica , Modelos Biológicos , Miocardio/metabolismo , Ramos Subendocárdicos/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal , Sulfonamidas/metabolismo , Factores de Tiempo
6.
Dev Dyn ; 227(4): 536-43, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12889062

RESUMEN

The heart beat is coordinated by a precisely timed sequence of action potentials propagated through cells of the conduction system. Previously, we have shown that conduction cells in the chick embryo are derived from multipotent, cardiomyogenic progenitors present in the looped, tubular heart. Moreover, analyses of heterogeneity within myocyte clones and cell birth dating have indicated that elaboration of the conduction system occurs by ongoing, localized recruitment from within this multipotent pool. In this study, we have focused on a potential role for Wnt signaling in development of the cardiac conduction system. Treatment of embryonic myocytes from chick with endothelin-1 (ET-1) has been shown to promote expression of markers of Purkinje fiber cells. By using this in vitro model, we find that Wnt11 are Wnt7a are up-regulated in association with ET-1 treatment. Moreover, in situ hybridization reveals expression, although not temporal coincidence of, Wnt11 and Wnt7a in specialized tissues in the developing heart in vivo. Specifically, whereas Wnt11 shows transient and prominent expression in central elements of the developing conduction system (e.g., the His bundle), relative increases in Wnt7a expression emerge at sites consistent with the location of peripheral conduction cells (e.g., subendocardial Purkinje fibers). The patterns of Wnt11 and Wnt7a expression observed in vitro and in the embryonic chick heart appear to be consistent with roles for these two Wnts in differentiation of cardiac conduction tissues.


Asunto(s)
Proteínas Aviares , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glicoproteínas/metabolismo , Sistema de Conducción Cardíaco/embriología , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Animales , Embrión de Pollo , Endotelina-1/farmacología , Glicoproteínas/genética , Hibridación in Situ , Proteínas Proto-Oncogénicas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba/efectos de los fármacos , Proteínas Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA