Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Med Chem ; 66(9): 6037-6046, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37083375

RESUMEN

Targeted protein degradation is a promising therapeutic strategy, spearheaded by the anti-myeloma drugs lenalidomide and pomalidomide. These drugs stabilize very efficiently the complex between the E3 ligase Cereblon (CRBN) and several non-native client proteins (neo-substrates), including the transcription factors Ikaros and Aiolos and the enzyme Caseine Kinase 1α (CK1α,), resulting in their degradation. Although the structures for these complexes have been determined, there are no evident interactions that can account for the high efficiency of formation of the ternary complex. We show that lenalidomide's stabilization of the CRBN-CK1α complex is largely due to hydrophobic shielding of intermolecular hydrogen bonds. We also find a quantitative relationship between hydrogen bond robustness and binding affinities of the ternary complexes. These results pave the way to further understand cooperativity effects in drug-induced protein-protein complexes and could help in the design of improved molecular glues and more efficient protein degraders.


Asunto(s)
Mieloma Múltiple , Humanos , Lenalidomida/farmacología , Lenalidomida/química , Mieloma Múltiple/tratamiento farmacológico , Ubiquitina-Proteína Ligasas/metabolismo , Proteolisis , Factores de Transcripción/metabolismo , Péptido Hidrolasas/metabolismo
2.
Nat Commun ; 13(1): 2366, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501326

RESUMEN

Immunotherapy promotes the attack of cancer cells by the immune system; however, it is difficult to detect early responses before changes in tumor size occur. Here, we report the rational design of a fluorogenic peptide able to detect picomolar concentrations of active granzyme B as a biomarker of immune-mediated anticancer action. Through a series of chemical iterations and molecular dynamics simulations, we synthesize a library of FRET peptides and identify probe H5 with an optimal fit into granzyme B. We demonstrate that probe H5 enables the real-time detection of T cell-mediated anticancer activity in mouse tumors and in tumors from lung cancer patients. Furthermore, we show image-based phenotypic screens, which reveal that the AKT kinase inhibitor AZD5363 shows immune-mediated anticancer activity. The reactivity of probe H5 may enable the monitoring of early responses to anticancer treatments using tissue biopsies.


Asunto(s)
Inmunoterapia , Neoplasias Pulmonares , Animales , Biopsia , Granzimas , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Péptidos , Investigación
3.
Eur J Med Chem ; 146: 108-122, 2018 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-29407943

RESUMEN

In Plasmodium falciparum the bifunctional enzyme glucose-6-phosphate dehydrogenase‒6-phosphogluconolactonase (PfG6PD‒6PGL) is involved in the catalysis of the first reaction of the pentose phosphate pathway. Since this enzyme has a key role in parasite development, its unique structure represents a potential target for the discovery of antimalarial drugs. Here we describe the first 3D structural model of the G6PD domain of PfG6PD‒6PGL. Compared to the human enzyme (hG6PD), the 3D model has enabled the identification of a key difference in the substrate-binding site, which involves the replacement of Arg365 in hG6PD by Asp750 in PfG6PD. In a prospective validation of the model, this critical change has been exploited to rationally design a novel family of substrate analog-based inhibitors that can display the necessary selectivity towards PfG6PD. A series of glucose derivatives featuring an α-methoxy group at the anomeric position and different side chains at position 6 bearing distinct basic functionalities has been synthesized, and their PfG6PD and hG6PD inhibitory activities and their toxicity against parasite and mammalian cells have been assessed. Several compounds displayed micromolar affinity (Ki up to 23 µM), favorable selectivity (up to > 26-fold), and low cytotoxicity. Phenotypic assays with P. falciparum cultures revealed high micromolar IC50 values, likely as a result of poor internalization of the compounds in the parasite cell. Overall, these results endorse confidence to the 3D model of PfG6PD, paving the way for the use of target-based drug design approaches in antimalarial drug discovery studies around this promising target.


Asunto(s)
Antimaláricos/farmacología , Descubrimiento de Drogas , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/síntesis química , Antimaláricos/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Glucosafosfato Deshidrogenasa/metabolismo , Células Hep G2 , Humanos , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/citología , Plasmodium falciparum/enzimología , Relación Estructura-Actividad , Células Tumorales Cultivadas
4.
Bioorg Med Chem ; 24(20): 4890-4899, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27485604

RESUMEN

In the framework of the 2015 D3R inaugural grand challenge, blind binding pose and affinity predictions were performed for a set of 180 ligands of the Heat Shock Protein HSP90-α protein, a relevant cancer target. Spectral clustering was used to rapidly identify alternative binding site conformations in publicly available crystallographic HSP90-α structures. Subsequently, multiple docking and scoring protocols employing the software Autodock Vina and rDock were applied to predict binding modes and rank order ligands. Alchemical free energy calculations were performed with the software FESetup and Sire/OpenMM to predict binding affinities for three congeneric series subsets. Some of the protocols used here were ranked among the top submissions according to most of the evaluation metrics. Docking performance was excellent, but the scoring results were disappointing. A critical assessment of the results is reported, as well as suggestions for future similar competitions.


Asunto(s)
Proteínas HSP90 de Choque Térmico/química , Termodinámica , Sitios de Unión , Bases de Datos Factuales , Ligandos , Simulación del Acoplamiento Molecular , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA