Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
2.
Proc Natl Acad Sci U S A ; 120(18): e2221175120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37094128

RESUMEN

Diffuse midline gliomas (DMGs) including diffuse intrinsic pontine gliomas (DIPGs) bearing lysine-to-methionine mutations in histone H3 at lysine 27 (H3K27M) are lethal childhood brain cancers. These tumors harbor a global reduction in the transcriptional repressive mark H3K27me3 accompanied by an increase in the transcriptional activation mark H3K27ac. We postulated that H3K27M mutations, in addition to altering H3K27 modifications, reprogram the master chromatin remodeling switch/sucrose nonfermentable (SWI/SNF) complex. The SWI/SNF complex can exist in two main forms termed BAF and PBAF that play central roles in neurodevelopment and cancer. Moreover, BAF antagonizes PRC2, the main enzyme catalyzing H3K27me3. We demonstrate that H3K27M gliomas show increased protein levels of the SWI/SNF complex ATPase subunits SMARCA4 and SMARCA2, and the PBAF component PBRM1. Additionally, knockdown of mutant H3K27M lowered SMARCA4 protein levels. The proteolysis targeting chimera (PROTAC) AU-15330 that simultaneously targets SMARCA4, SMARCA2, and PBRM1 for degradation exhibits cytotoxicity in H3.3K27M but not H3 wild-type cells. AU-15330 lowered chromatin accessibility measured by ATAC-Seq at nonpromoter regions and reduced global H3K27ac levels. Integrated analysis of gene expression, proteomics, and chromatin accessibility in AU-15330-treated cells demonstrated reduction in the levels of FOXO1, a key member of the forkhead family of transcription factors. Moreover, genetic or pharmacologic targeting of FOXO1 resulted in cell death in H3K27M cells. Overall, our results suggest that H3K27M up-regulates SMARCA4 levels and combined targeting of SWI/SNF ATPases in H3.3K27M can serve as a potent therapeutic strategy for these deadly childhood brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioma Pontino Intrínseco Difuso , Glioma , Humanos , Niño , Histonas/genética , Adenosina Trifosfatasas/metabolismo , Lisina/genética , Cromatina , Glioma/genética , Neoplasias Encefálicas/genética , Mutación , ADN Helicasas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
3.
J Pathol Inform ; 13: 100090, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268104

RESUMEN

Molecular subtypes of medulloblastoma [Sonic Hedgehog (SHH), Wingless/INT (WNT), Group 3, and Group 4] are defined by common patterns of gene expression. These differential gene expression patterns appear to result in different histomorphology and prognosis. Quantitative histomorphometry is a well-known method of computer-aided pathology image analysis. The hypotheses we sought to examine in this preliminary proof of concept study were whether computer extracted nuclear morphological features of medulloblastomas from digitized tissue slide images could independently: (1) distinguish between molecularly determined subgroups and (2) identify patterns within these subgroups that correspond with clinical outcome. Our dataset was composed of 46 medulloblastoma patients: 16 SHH (5 dead, 11 survived), 3 WNT (0 dead, 3 survived), 12 Group 3 (4 dead, 8 survived), and 15 were Group 4 (5 dead, 10 survived). A watershed-based thresholding scheme was used to automatically identify individual nuclei within digitized whole slide hematoxylin and eosin tissue images. Quantitative histomorphometric features corresponding to the texture (variation in pixel intensity), shape (variations in size, roundness), and architectural rearrangement (distances between, and number of connected neighbors) of nuclei were subsequently extracted. These features were ranked using feature selection schemes and these top-ranked features were then used to train machine-learning classifiers via threefold cross-validation to separate patients based on: (1) molecular subtype and (2) disease-specific outcomes within the individual molecular subtype groups. SHH and WNT tumors were separated from Groups 3 and 4 tumors with a maximum area under the receiver operating characteristic curve (AUC) of 0.7, survival within Group 3 tumors was predicted with an AUC of 0.92, and Group 3 and 4 patients were separated into high- and low-risk groups with p = 0.002. Model prediction was quantitatively compared with age, stage, and histological subtype using univariate and multivariate Cox hazard ratio models. Age was the most statistically significant variable for predicting survival in Group 3 and 4 tumors, but model predictions had the highest hazard ratio value. Quantitative nuclear histomorphometry can be used to study medulloblastoma genetic expression phenotypes as it may distinguish meaningful features of disease pathology.

4.
Pediatr Dev Pathol ; 25(1): 10-22, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35168418

RESUMEN

Central nervous system (CNS) tumors are now the most common type of solid tumor in individuals aged 0-19 years, with an incidence rate in the United States around 5 per 100,000, accounting for about 1 out of 4 childhood cancers. Pediatric pathologists encounter brain tumor cases with varying frequency, but many of these encounters begin in the context of intraoperative consultation or "frozen section." This review provides an overview of the technical aspects of intraoperative consultation specific to, or more helpful in, CNS tumors, emphasizing helpful cytologic and histologic features of the more commonly encountered pediatric CNS tumors, and illustrating some common diagnostic pitfalls and how these may be avoided.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Adolescente , Adulto , Neoplasias Encefálicas/diagnóstico , Neoplasias del Sistema Nervioso Central/diagnóstico , Niño , Preescolar , Secciones por Congelación , Humanos , Lactante , Recién Nacido , Derivación y Consulta , Adulto Joven
5.
Pediatr Dev Pathol ; 25(1): 34-45, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35168419

RESUMEN

Since the 1990s, the sheer number of defined central nervous system (CNS) embryonal tumor entities has continuously increased, with the trend accelerating in the most recent editions of the World Health Organization (WHO) Classification of Tumours of the CNS. The introduction of increasingly specific tumor groups is an effort to create more internally homogeneous categories, to allow more precise prognostication, and potentially to develop targeted therapies. However, these ever-smaller categories within an already rare group of tumors pose a challenge for pediatric pathologists. In this article we review the current categorization of non-medulloblastoma CNS embryonal tumors (including atypical teratoid/rhabdoid tumor, cribriform neuroepithelial tumor, embryonal tumor with multilayered rosettes, CNS neuroblastoma, FOXR2-activated, and CNS tumor with BCOR internal tandem duplication) and provide an overview of available ancillary techniques to characterize these tumors. We provide a practical approach to workup and development of an integrated diagnosis for CNS embryonal tumors.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Neoplasias Cerebelosas , Meduloblastoma , Neoplasias de Células Germinales y Embrionarias , Sistema Nervioso Central , Neoplasias del Sistema Nervioso Central/diagnóstico , Niño , Factores de Transcripción Forkhead , Humanos , Meduloblastoma/diagnóstico , Meduloblastoma/terapia , Neoplasias de Células Germinales y Embrionarias/diagnóstico
6.
Pediatr Dev Pathol ; 25(1): 6-9, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33872110

RESUMEN

Tumor classification in neuropathology is a dynamic and complex topic, with many changes emerging in the past 5 years, up to and including the 2021 publication of the 5th edition of the World Health Organization Classification of Tumours of the Central Nervous System (CNS). For pediatric pathologists who will encounter brain tumors with varying frequency, it is important to understand the principles of these classification updates, particularly the inclusion of molecular genetic features and development of a layered, or integrated, diagnosis. This issue of Perspectives in Pediatric Pathology is dedicated to the examination of pediatric brain tumors, and features articles on intraoperative diagnosis and updated information on molecular-based classification for pediatric glial, glioneuronal, ependymal, and embryonal tumors of the CNS.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Neoplasias de Células Germinales y Embrionarias , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Sistema Nervioso Central , Neoplasias del Sistema Nervioso Central/diagnóstico , Niño , Humanos , Organización Mundial de la Salud
7.
Front Oncol ; 12: 915143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620600

RESUMEN

Introduction: Medulloblastoma (MB) is a malignant, heterogenous brain tumor. Advances in molecular profiling have led to identifying four molecular subgroups of MB (WNT, SHH, Group 3, Group 4), each with distinct clinical behaviors. We hypothesize that (1) aggressive MB tumors, growing heterogeneously, induce pronounced local structural deformations in the surrounding parenchyma, and (b) these local deformations as captured on Gadolinium (Gd)-enhanced-T1w MRI are independently associated with molecular subgroups, as well as overall survival in MB patients. Methods: In this work, a total of 88 MB studies from 2 institutions were analyzed. Following tumor delineation, Gd-T1w scan for every patient was registered to a normal age-specific T1w-MRI template via deformable registration. Following patient-atlas registration, local structural deformations in the brain parenchyma were obtained for every patient by computing statistics from deformation magnitudes obtained from every 5mm annular region, 0 < d < 60 mm, where d is the distance from the tumor infiltrating edge. Results: Multi-class comparison via ANOVA yielded significant differences between deformation magnitudes obtained for Group 3, Group 4, and SHH molecular subgroups, observed up to 60-mm outside the tumor edge. Additionally, Kaplan-Meier survival analysis showed that the local deformation statistics, combined with the current clinical risk-stratification approaches (molecular subgroup information and Chang's classification), could identify significant differences between high-risk and low-risk survival groups, achieving better performance results than using any of these approaches individually. Discussion: These preliminary findings suggest there exists significant association of our tumor-induced deformation descriptor with overall survival in MB, and that there could be an added value in using the proposed radiomic descriptor along with the current risk classification approaches, towards more reliable risk assessment in pediatric MB.

8.
Sci Transl Med ; 13(614): eabc0497, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34613815

RESUMEN

Childhood posterior fossa group A ependymomas (PFAs) have limited treatment options and bear dismal prognoses compared to group B ependymomas (PFBs). PFAs overexpress the oncohistone-like protein EZHIP (enhancer of Zeste homologs inhibitory protein), causing global reduction of repressive histone H3 lysine 27 trimethylation (H3K27me3), similar to the oncohistone H3K27M. Integrated metabolic analyses in patient-derived cells and tumors, single-cell RNA sequencing of tumors, and noninvasive metabolic imaging in patients demonstrated enhanced glycolysis and tricarboxylic acid (TCA) cycle metabolism in PFAs. Furthermore, high glycolytic gene expression in PFAs was associated with a poor outcome. PFAs demonstrated high EZHIP expression associated with poor prognosis and elevated activating mark histone H3 lysine 27 acetylation (H3K27ac). Genomic H3K27ac was enriched in PFAs at key glycolytic and TCA cycle­related genes including hexokinase-2 and pyruvate dehydrogenase. Similarly, mouse neuronal stem cells (NSCs) expressing wild-type EZHIP (EZHIP-WT) versus catalytically attenuated EZHIP-M406K demonstrated H3K27ac enrichment at hexokinase-2 and pyruvate dehydrogenase, accompanied by enhanced glycolysis and TCA cycle metabolism. AMPKα-2, a key component of the metabolic regulator AMP-activated protein kinase (AMPK), also showed H3K27ac enrichment in PFAs and EZHIP-WT NSCs. The AMPK activator metformin lowered EZHIP protein concentrations, increased H3K27me3, suppressed TCA cycle metabolism, and showed therapeutic efficacy in vitro and in vivo in patient-derived PFA xenografts in mice. Our data indicate that PFAs and EZHIP-WT­expressing NSCs are characterized by enhanced glycolysis and TCA cycle metabolism. Repurposing the antidiabetic drug metformin lowered pathogenic EZHIP, increased H3K27me3, and suppressed tumor growth, suggesting that targeting integrated metabolic/epigenetic pathways is a potential therapeutic strategy for treating childhood ependymomas.


Asunto(s)
Ependimoma , Histonas , Animales , Niño , Ependimoma/genética , Epigénesis Genética , Epigenómica , Histonas/genética , Humanos , Redes y Vías Metabólicas , Ratones
9.
Sci Transl Med ; 13(615): eabf7860, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34644147

RESUMEN

High-grade gliomas with arginine or valine substitutions of the histone H3.3 glycine-34 residue (H3.3G34R/V) carry a dismal prognosis, and current treatments, including radiotherapy and chemotherapy, are not curative. Because H3.3G34R/V mutations reprogram epigenetic modifications, we undertook a comprehensive epigenetic approach using ChIP sequencing and ChromHMM computational analysis to define therapeutic dependencies in H3.3G34R/V gliomas. Our analyses revealed a convergence of epigenetic alterations, including (i) activating epigenetic modifications on histone H3 lysine (K) residues such as H3K36 trimethylation (H3K36me3), H3K27 acetylation (H3K27ac), and H3K4 trimethylation (H3K4me3); (ii) DNA promoter hypomethylation; and (iii) redistribution of repressive histone H3K27 trimethylation (H3K27me3) to intergenic regions at the leukemia inhibitory factor (LIF) locus to drive increased LIF abundance and secretion by H3.3G34R/V cells. LIF activated signal transducer and activator of transcription 3 (STAT3) signaling in an autocrine/paracrine manner to promote survival of H3.3G34R/V glioma cells. Moreover, immunohistochemistry and single-cell RNA sequencing from H3.3G34R/V patient tumors revealed high STAT3 protein and RNA expression, respectively, in tumor cells with both inter- and intratumor heterogeneity. We targeted STAT3 using a blood-brain barrier­penetrable small-molecule inhibitor, WP1066, currently in clinical trials for adult gliomas. WP1066 treatment resulted in H3.3G34R/V tumor cell toxicity in vitro and tumor suppression in preclinical mouse models established with KNS42 cells, SJ-HGGx42-c cells, or in utero electroporation techniques. Our studies identify the LIF/STAT3 pathway as a key epigenetically driven and druggable vulnerability in H3.3G34R/V gliomas. This finding could inform development of targeted, combination therapies for these lethal brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Epigénesis Genética , Glioma/genética , Glicina , Histonas/metabolismo , Humanos , Ratones
11.
Brain Pathol ; 31(5): e12967, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33938067

RESUMEN

Atypical teratoid/rhabdoid tumor (AT/RT) is a highly malignant tumor that may not only contain rhabdoid tumor cells but also poorly differentiated small-round-blue cells as well as areas with mesenchymal or epithelial differentiation. Little is known on factors associated with histopathological diversity. Recent studies demonstrated three molecular subgroups of AT/RT, namely ATRT-TYR, ATRT-SHH, and ATRT-MYC. We thus aimed to investigate if morphological patterns might be related to molecular subgroup status. Hematoxylin-eosin stained sections of 114 AT/RT with known molecular subgroup status were digitalized and independently categorized by nine blinded observers into four morphological categories, that is, "rhabdoid," "small-round-blue," "epithelial," and "mesenchymal." The series comprised 48 ATRT-SHH, 40 ATRT-TYR, and 26 ATRT-MYC tumors. Inter-observer agreement was moderate but significant (Fleiss' kappa = 0.47; 95% C.I. 0.41-0.53; p < 0.001) and there was a highly significant overall association between morphological categories and molecular subgroups for each of the nine observers (p < 0.0001). Specifically, the category "epithelial" was found to be over-represented in ATRT-TYR (p < 0.000001) and the category "small-round-blue" to be over-represented in ATRT-SHH (p < 0.01). The majority of ATRT-MYC was categorized as "mesenchymal" or "rhabdoid," but this association was less compelling. The specificity of the category "epithelial" for ATRT-TYR was highest and accounted for 97% (range: 88-99%) whereas sensitivity was low [49% (range: 35%-63%)]. In line with these findings, cytokeratin-positivity was highly overrepresented in ATRT-TYR. In conclusion, morphological features of AT/RT might reflect molecular alterations and may also provide a first hint on molecular subgroup status, which will need to be confirmed by DNA methylation profiling.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias del Sistema Nervioso Central/patología , Tumor Rabdoide/patología , Teratoma/patología , Adolescente , Adulto , Neoplasias del Sistema Nervioso Central/genética , Niño , Metilación de ADN/genética , Femenino , Humanos , Masculino , Neoplasias Neuroepiteliales/genética , Neoplasias Neuroepiteliales/patología , Proteína SMARCB1/genética , Adulto Joven
12.
Neurooncol Adv ; 3(1): vdab037, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33948563

RESUMEN

BACKGROUND: Recent large-scale genomic studies have revealed a spectrum of genetic variants associated with specific subtypes of central nervous system (CNS) tumors. The aim of this study was to determine the clinical utility of comprehensive genomic profiling of pediatric, adolescent and young adult (AYA) CNS tumors in a prospective setting, including detection of DNA sequence variants, gene fusions, copy number alterations (CNAs), and loss of heterozygosity. METHODS: OncoKids, a comprehensive DNA- and RNA-based next-generation sequencing (NGS) panel, in conjunction with chromosomal microarray analysis (CMA) was employed to detect diagnostic, prognostic, and therapeutic markers. NGS was performed on 222 specimens from 212 patients. Clinical CMA data were analyzed in parallel for 66% (146/222) of cases. RESULTS: NGS demonstrated clinically significant alterations in 66% (147/222) of cases. Diagnostic markers were identified in 62% (138/222) of cases. Prognostic information and targetable genomic alterations were identified in 22% (49/222) and 18% (41/222) of cases, respectively. Diagnostic or prognostic CNAs were revealed by CMA in 69% (101/146) of cases. Importantly, clinically significant CNAs were detected in 57% (34/60) of cases with noncontributory NGS results. Germline cancer predisposition testing was indicated for 27% (57/212) of patients. Follow-up germline testing was performed for 20 patients which confirmed a germline pathogenic/likely pathogenic variant in 9 cases: TP53 (2), NF1 (2), SMARCB1 (1), NF2 (1), MSH6 (1), PMS2 (1), and a patient with 47,XXY Klinefelter syndrome. CONCLUSIONS: Our results demonstrate the significant clinical utility of integrating genomic profiling into routine clinical testing for pediatric and AYA patients with CNS tumors.

13.
EBioMedicine ; 67: 103355, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33915337

RESUMEN

BACKGROUND: There is increasing concern that persistent infection of SARS-CoV-2 within immunocompromised hosts could serve as a reservoir for mutation accumulation and subsequent emergence of novel strains with the potential to evade immune responses. METHODS: We describe three patients with acute lymphoblastic leukemia who were persistently positive for SARS-CoV-2 by real-time polymerase chain reaction. Viral viability from longitudinally-collected specimens was assessed. Whole-genome sequencing and serological studies were performed to measure viral evolution and evidence of immune escape. FINDINGS: We found compelling evidence of ongoing replication and infectivity for up to 162 days from initial positive by subgenomic RNA, single-stranded RNA, and viral culture analysis. Our results reveal a broad spectrum of infectivity, host immune responses, and accumulation of mutations, some with the potential for immune escape. INTERPRETATION: Our results highlight the potential need to reassess infection control precautions in the management and care of immunocompromised patients. Routine surveillance of mutations and evaluation of their potential impact on viral transmission and immune escape should be considered.


Asunto(s)
COVID-19/inmunología , Evasión Inmune , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras/virología , SARS-CoV-2/genética , COVID-19/virología , Preescolar , Evolución Molecular , Femenino , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunidad Humoral , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Análisis de Secuencia de ARN , Secuenciación Completa del Genoma , Adulto Joven
14.
medRxiv ; 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33688673

RESUMEN

Background: There is increasing concern that persistent infection of SARS-CoV-2 within immunocompromised hosts could serve as a reservoir for mutation accumulation and subsequent emergence of novel strains with the potential to evade immune responses. Methods: We describe three patients with acute lymphoblastic leukemia who were persistently positive for SARS-CoV-2 by real-time polymerase chain reaction. Viral viability from longitudinally-collected specimens was assessed. Whole-genome sequencing and serological studies were performed to measure viral evolution and evidence of immune escape. Findings: We found compelling evidence of ongoing replication and infectivity for up to 162 days from initial positive by subgenomic RNA, single-stranded RNA, and viral culture analysis. Our results reveal a broad spectrum of infectivity, host immune responses, and accumulation of mutations, some with the potential for immune escape. Interpretation: Our results highlight the need to reassess infection control precautions in the management and care of immunocompromised patients. Routine surveillance of mutations and evaluation of their potential impact on viral transmission and immune escape should be considered. Funding: The work was partially funded by The Saban Research Institute at Children's Hospital Los Angeles intramural support for COVID-19 Directed Research (X.G. and J.D.B.), the Johns Hopkins Center of Excellence in Influenza Research and Surveillance HHSN272201400007C (A.P.), NIH/NIAID R01AI127877 (S.D.B.), NIH/NIAID R01AI130398 (S.D.B.), NIH 1U54CA260517 (S.D.B.), an endowment to S.D.B. from the Crown Family Foundation, an Early Postdoc.Mobility Fellowship Stipend to O.F.W. from the Swiss National Science Foundation (SNSF), and a Coulter COVID-19 Rapid Response Award to S.D.B. L.G. is a SHARE Research Fellow in Pediatric Hematology-Oncology.

15.
Cancer Cell ; 38(3): 334-349.e9, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32795401

RESUMEN

H3K27M diffuse intrinsic pontine gliomas (DIPGs) are fatal and lack treatments. They mainly harbor H3.3K27M mutations resulting in H3K27me3 reduction. Integrated analysis in H3.3K27M cells, tumors, and in vivo imaging in patients showed enhanced glycolysis, glutaminolysis, and tricarboxylic acid cycle metabolism with high alpha-ketoglutarate (α-KG) production. Glucose and/or glutamine-derived α-KG maintained low H3K27me3 in H3.3K27M cells, and inhibition of key enzymes in glycolysis or glutaminolysis increased H3K27me3, altered chromatin accessibility, and prolonged survival in animal models. Previous studies have shown that mutant isocitrate-dehydrogenase (mIDH)1/2 glioma cells convert α-KG to D-2-hydroxyglutarate (D-2HG) to increase H3K27me3. Here, we show that H3K27M and IDH1 mutations are mutually exclusive and experimentally synthetic lethal. Overall, we demonstrate that H3.3K27M and mIDH1 hijack a conserved and critical metabolic pathway in opposing ways to maintain their preferred epigenetic state. Consequently, interruption of this metabolic/epigenetic pathway showed potent efficacy in preclinical models, suggesting key therapeutic targets for much needed treatments.


Asunto(s)
Neoplasias del Tronco Encefálico/genética , Glioma Pontino Intrínseco Difuso/genética , Epigenómica/métodos , Histonas/genética , Mutación , Animales , Neoplasias del Tronco Encefálico/metabolismo , Línea Celular Tumoral , Glioma Pontino Intrínseco Difuso/metabolismo , Regulación Neoplásica de la Expresión Génica , Glucólisis , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Metilación , Ratones Endogámicos NOD , Ratones Noqueados , Ratones Desnudos , Ratones SCID , Trasplante Heterólogo
17.
J Pathol ; 252(1): 77-87, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32558936

RESUMEN

Atypical teratoid rhabdoid tumor (ATRT) is a fatal pediatric malignancy of the central neural system lacking effective treatment options. It belongs to the rhabdoid tumor family and is usually caused by biallelic inactivation of SMARCB1, encoding a key subunit of SWI/SNF chromatin remodeling complexes. Previous studies proposed that SMARCB1 loss drives rhabdoid tumor by promoting cell cycle through activating transcription of cyclin D1 while suppressing p16. However, low cyclin D1 protein expression is observed in most ATRT patient tumors. The underlying mechanism and therapeutic implication of this molecular trait remain unknown. Here, we show that SMARCB1 loss in ATRT leads to the reduction of cyclin D1 expression by upregulating MIR17HG, a microRNA (miRNA) cluster known to generate multiple miRNAs targeting CCND1. Furthermore, we find that this cyclin D1 deficiency in ATRT results in marked in vitro and in vivo sensitivity to the CDK4/6 inhibitor palbociclib as a single agent. Our study identifies a novel genetic interaction between SMARCB1 and MIR17HG in regulating cyclin D1 in ATRT and suggests a rationale to treat ATRT patients with FDA-approved CDK4/6 inhibitors. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Ciclina D1/genética , Regulación Neoplásica de la Expresión Génica , Proteínas/genética , Tumor Rabdoide/genética , Proteína SMARCB1/genética , Teratoma/genética , Línea Celular Tumoral , Supervivencia Celular , Ciclina D1/metabolismo , Humanos , Proteínas/metabolismo , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patología , Proteína SMARCB1/metabolismo , Teratoma/metabolismo , Teratoma/patología , Regulación hacia Arriba
18.
Neuro Oncol ; 22(7): 944-954, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32129445

RESUMEN

Atypical teratoid rhabdoid tumor (ATRT) is a rare, highly malignant central nervous system cancer arising in infants and younger children, historically considered to be homogeneous, monogenic, and incurable. Recent use of intensified therapies has modestly improved survival for ATRT; however, a majority of patients will still succumb to their disease. While ATRTs almost universally exhibit loss of SMARCB1 (BAF47/INI1/SNF5), recent whole genome, transcriptome, and epigenomic analyses of large cohorts reveal previously underappreciated molecular heterogeneity. These discoveries provide novel insights into how SMARCB1 loss drives oncogenesis and confer specific therapeutic vulnerabilities, raising exciting prospects for molecularly stratified treatment for patients with ATRT.


Asunto(s)
Neoplasias Neuroepiteliales , Tumor Rabdoide , Epigenómica , Humanos , Tumor Rabdoide/tratamiento farmacológico , Tumor Rabdoide/genética , Proteína SMARCB1/genética
20.
J Clin Oncol ; 38(11): 1175-1185, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32105509

RESUMEN

PURPOSE: Atypical teratoid/rhabdoid tumor (AT/RT) is an aggressive, early-childhood brain tumor without standard effective treatment. To our knowledge, we conducted the first AT/RT-specific cooperative group trial, ACNS0333, to examine the efficacy and safety of intensive postoperative chemotherapy and focal radiation to treat AT/RT. PATIENTS AND METHODS: Patients from birth to 22 years of age with AT/RT were eligible. After surgery, they received 2 courses of multiagent chemotherapy, followed by 3 courses of high-dose chemotherapy with peripheral blood stem cell rescue and involved-field radiation therapy. Timing of radiation was based on patient age and disease location and extent. Central testing of tumor and blood for SMARCB1 status was mandated. Tumor molecular subclassification was performed retrospectively. The primary analysis was event-free survival (EFS) for patients < 36 months of age compared with a cooperative groups' historical cohort. Although accrual was based on the therapeutic question, potential prognostic factors, including age, tumor location, M stage, surgical resection, order of therapy, germline status, and molecular subtype, were explored. RESULTS: Of 65 evaluable patients, 54 were < 36 months of age. ACNS0333 therapy significantly reduced the risk of EFS events in patients < 36 months of age compared with the historical cohort (P < .0005; hazard rate, 0.43; 95% CI, 0.28 to 0.66). Four-year EFS and overall survival for the entire cohort were 37% (95% CI, 25% to 49%) and 43% (95% CI, 31% to 55%), respectively. Timing of radiation did not affect survival, and 91% of relapses occurred by 2 years from enrollment. Treatment-related deaths occurred in 4 patients. CONCLUSION: The ACNS0333 regimen dramatically improved survival compared with historical therapies for patients with AT/RT. Clinical characteristics and molecular subgrouping suggest prognostic differences. ACNS0333 results lay a foundation on which to build future studies and incorporate testing of new therapeutic agents.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Radioterapia Conformacional/métodos , Tumor Rabdoide/terapia , Teratoma/terapia , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Niño , Preescolar , Terapia Combinada , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Pronóstico , Tumor Rabdoide/genética , Tumor Rabdoide/mortalidad , Proteína SMARCB1/genética , Teratoma/genética , Teratoma/mortalidad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA