Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
iScience ; 23(9): 101517, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32927263

RESUMEN

Structural mutants of p53 induce global p53 protein destabilization and misfolding, followed by p53 protein aggregation. First evidence indicates that p53 can be part of protein condensates and that p53 aggregation potentially transitions through a condensate-like state. We show condensate-like states of fluorescently labeled structural mutant p53 in the nucleus of living cancer cells. We furthermore identified small molecule compounds that interact with the p53 protein and lead to dissolution of p53 structural mutant condensates. The same compounds lead to condensation of a fluorescently tagged p53 DNA-binding mutant, indicating that the identified compounds differentially alter p53 condensation behavior depending on the type of p53 mutation. In contrast to p53 aggregation inhibitors, these compounds are active on p53 condensates and do not lead to mutant p53 reactivation. Taken together our study provides evidence for structural mutant p53 condensation in living cells and tools to modulate this process.

2.
FEBS Lett ; 588(1): 151-9, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24291262

RESUMEN

Neurodegenerative disorders such as Huntington's disease are hallmarked by neuronal intracellular inclusion body formation. Whether proteasomes are irreversibly recruited into inclusion bodies in these protein misfolding disorders is a controversial subject. In addition, it has been proposed that the proteasomes may become clogged by the aggregated protein fragments, leading to impairment of the ubiquitin-proteasome system. Here, we show by fluorescence pulse-chase experiments in living cells that proteasomes are dynamically and reversibly recruited into inclusion bodies. As these recruited proteasomes remain catalytically active and accessible to substrates, our results challenge the concept of proteasome sequestration and impairment in Huntington's disease, and support the reported absence of proteasome impairment in mouse models of Huntington's disease.


Asunto(s)
Enfermedad de Huntington/metabolismo , Cuerpos de Inclusión/metabolismo , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Western Blotting , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Cuerpos de Inclusión/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Microscopía Confocal , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Péptidos/genética , Complejo de la Endopetidasa Proteasomal/genética , Unión Proteica , Expansión de Repetición de Trinucleótido/genética
3.
J Biol Chem ; 288(38): 27068-27084, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23908352

RESUMEN

Huntington disease is a neurodegenerative disorder caused by an expanded polyglutamine (polyQ) repeat within the protein huntingtin (Htt). N-terminal fragments of the mutant Htt (mHtt) proteins containing the polyQ repeat are aggregation-prone and form intracellular inclusion bodies. Improving the clearance of mHtt fragments by intracellular degradation pathways is relevant to obviate toxic mHtt species and subsequent neurodegeneration. Because the proteasomal degradation pathway has been the subject of controversy regarding the processing of expanded polyQ repeats, we examined whether the proteasome can efficiently degrade Htt-exon1 with an expanded polyQ stretch both in neuronal cells and in vitro. Upon targeting mHtt-exon1 to the proteasome, rapid and complete clearance of mHtt-exon1 was observed. Proteasomal degradation of mHtt-exon1 was devoid of polyQ peptides as partial cleavage products by incomplete proteolysis, indicating that mammalian proteasomes are capable of efficiently degrading expanded polyQ sequences without an inhibitory effect on the proteasomal activity.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Animales , Línea Celular , Humanos , Proteína Huntingtina , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Péptidos/genética , Complejo de la Endopetidasa Proteasomal/genética , Secuencias Repetitivas de Aminoácido
4.
J Biol Chem ; 288(24): 17225-37, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23612975

RESUMEN

Fragments of proteins containing an expanded polyglutamine (polyQ) tract are thought to initiate aggregation and toxicity in at least nine neurodegenerative diseases, including Huntington's disease. Because proteasomes appear unable to digest the polyQ tract, which can initiate intracellular protein aggregation, preventing polyQ peptide aggregation by chaperones should greatly improve polyQ clearance and prevent aggregate formation. Here we expressed polyQ peptides in cells and show that their intracellular aggregation is prevented by DNAJB6 and DNAJB8, members of the DNAJ (Hsp40) chaperone family. In contrast, HSPA/Hsp70 and DNAJB1, also members of the DNAJ chaperone family, did not prevent peptide-initiated aggregation. Intriguingly, DNAJB6 and DNAJB8 also affected the soluble levels of polyQ peptides, indicating that DNAJB6 and DNAJB8 inhibit polyQ peptide aggregation directly. Together with recent data showing that purified DNAJB6 can suppress fibrillation of polyQ peptides far more efficiently than polyQ expanded protein fragments in vitro, we conclude that the mechanism of DNAJB6 and DNAJB8 is suppression of polyQ protein aggregation by directly binding the polyQ tract.


Asunto(s)
Proteínas del Choque Térmico HSP40/fisiología , Chaperonas Moleculares/fisiología , Proteínas del Tejido Nervioso/fisiología , Fragmentos de Péptidos/metabolismo , Péptidos/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Unión Proteica , Multimerización de Proteína , Solubilidad
5.
Neurotox Res ; 20(2): 120-33, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21116768

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine expansion near the N-terminus of huntingtin. A neuropathological hallmark of Huntington's disease is the presence of intracellular aggregates composed of mutant huntingtin N-terminal fragments in human postmortem brain, animal models, and cell culture models. It has been found that N-terminal fragments of the mutant huntingtin protein are more toxic than the full-length protein. Therefore, proteolytic processing of mutant huntingtin may play a key event in the pathogenesis of HD. Here, we present evidence that the region in huntingtin covering amino acids 116 to 125 is critical for N-terminal proteolytic processing. Within this region, we have identified mutations that either strongly reduce or enhance N-terminal cleavage. We took advantage of this effect and demonstrate that the mutation Δ121-122 within the putative cleavage region enhances N-terminal cleavage of huntingtin and the aggregation of N-terminal fragments. Furthermore, this particular deletion increased the activation of apoptotic processes and decreased neuronal cell viability. Our data indicate that the N-terminal proteolytic processing of mutant huntingtin can be modulated with an effect on aggregation and cell death rate.


Asunto(s)
Apoptosis/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Agregación Celular/genética , Recuento de Células , Línea Celular Transformada , Línea Celular Tumoral , Chlorocebus aethiops , Mapeo Epitopo/métodos , Humanos , Proteína Huntingtina , Ratones , Proteínas Mutantes/genética , Fragmentos de Péptidos/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA