Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Magn Reson Med ; 90(1): 312-328, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36912473

RESUMEN

PURPOSE: The development of advanced estimators for intravoxel incoherent motion (IVIM) modeling is often motivated by a desire to produce smoother parameter maps than least squares (LSQ). Deep neural networks show promise to this end, yet performance may be conditional on a myriad of choices regarding the learning strategy. In this work, we have explored potential impacts of key training features in unsupervised and supervised learning for IVIM model fitting. METHODS: Two synthetic data sets and one in-vivo data set from glioma patients were used in training of unsupervised and supervised networks for assessing generalizability. Network stability for different learning rates and network sizes was assessed in terms of loss convergence. Accuracy, precision, and bias were assessed by comparing estimations against ground truth after using different training data (synthetic and in vivo). RESULTS: A high learning rate, small network size, and early stopping resulted in sub-optimal solutions and correlations in fitted IVIM parameters. Extending training beyond early stopping resolved these correlations and reduced parameter error. However, extensive training resulted in increased noise sensitivity, where unsupervised estimates displayed variability similar to LSQ. In contrast, supervised estimates demonstrated improved precision but were strongly biased toward the mean of the training distribution, resulting in relatively smooth, yet possibly deceptive parameter maps. Extensive training also reduced the impact of individual hyperparameters. CONCLUSION: Voxel-wise deep learning for IVIM fitting demands sufficiently extensive training to minimize parameter correlation and bias for unsupervised learning, or demands a close correspondence between the training and test sets for supervised learning.


Asunto(s)
Aprendizaje Profundo , Humanos , Algoritmos , Imagen de Difusión por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Movimiento (Física)
2.
Magn Reson Med ; 86(4): 2250-2265, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34105184

RESUMEN

PURPOSE: Earlier work showed that IVIM-NETorig , an unsupervised physics-informed deep neural network, was faster and more accurate than other state-of-the-art intravoxel-incoherent motion (IVIM) fitting approaches to diffusion-weighted imaging (DWI). This study presents a substantially improved version, IVIM-NEToptim , and characterizes its superior performance in pancreatic cancer patients. METHOD: In simulations (signal-to-noise ratio [SNR] = 20), the accuracy, independence, and consistency of IVIM-NET were evaluated for combinations of hyperparameters (fit S0, constraints, network architecture, number of hidden layers, dropout, batch normalization, learning rate), by calculating the normalized root-mean-square error (NRMSE), Spearman's ρ, and the coefficient of variation (CVNET ), respectively. The best performing network, IVIM-NEToptim was compared to least squares (LS) and a Bayesian approach at different SNRs. IVIM-NEToptim 's performance was evaluated in an independent dataset of 23 patients with pancreatic ductal adenocarcinoma. Fourteen of the patients received no treatment between two repeated scan sessions and nine received chemoradiotherapy between the repeated sessions. Intersession within-subject standard deviations (wSD) and treatment-induced changes were assessed. RESULTS: In simulations (SNR = 20), IVIM-NEToptim outperformed IVIM-NETorig in accuracy (NRMSE(D) = 0.177 vs 0.196; NMRSE(f) = 0.220 vs 0.267; NMRSE(D*) = 0.386 vs 0.393), independence (ρ(D*, f) = 0.22 vs 0.74), and consistency (CVNET (D) = 0.013 vs 0.104; CVNET (f) = 0.020 vs 0.054; CVNET (D*) = 0.036 vs 0.110). IVIM-NEToptim showed superior performance to the LS and Bayesian approaches at SNRs < 50. In vivo, IVIM-NEToptim showed significantly less noisy parameter maps with lower wSD for D and f than the alternatives. In the treated cohort, IVIM-NEToptim detected the most individual patients with significant parameter changes compared to day-to-day variations. CONCLUSION: IVIM-NEToptim is recommended for accurate, informative, and consistent IVIM fitting to DWI data.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pancreáticas , Algoritmos , Teorema de Bayes , Imagen de Difusión por Resonancia Magnética , Humanos , Movimiento (Física) , Neoplasias Pancreáticas/diagnóstico por imagen , Física , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA