Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biomedicines ; 11(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38137456

RESUMEN

The presence of circulating Hsp70 levels and their influence on the immunophenotype of circulating lymphocyte subsets were examined as diagnostic/prognostic biomarkers for the overall survival (OS) in patients with IDH-mutant WHO grade 3 oligodendroglioma, astrocytoma, and IDH-wildtype grade 4 glioblastoma (GBM). Vesicular and free Hsp70 in the plasma/serum was measured using the Hsp70-exo and R&D Systems DuoSet® Hsp70 ELISAs. The immunophenotype and membrane Hsp70 status was determined by multiparameter flow cytometry on peripheral blood lymphocytes and single-cell suspensions of tumor specimens and cultured cells. Compared to healthy controls, circulating vesicular Hsp70 levels were significantly increased in patients with GBM, concomitant with a significant decrease in the proportion of CD3+/CD4+ helper T cells, whereas the frequency of NK cells was most prominently increased in patients with grade 3 gliomas. Elevated circulating Hsp70 levels and a higher prevalence of activated CD3-/CD56+/CD94+/CD69+ NK cells were associated with an improved OS in grade 3 gliomas, whereas high Hsp70 levels and low CD3+/CD4+ frequencies were associated with an adverse OS in GBM. It is assumed that a reduced membrane Hsp70 density on grade 4 versus grade 3 primary glioma cells and reduced CD3+/CD4+ T cell counts in GBM might drive an immunosuppressive tumor microenvironment.

2.
Strahlenther Onkol ; 199(12): 1214-1224, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37658922

RESUMEN

PURPOSE: Radiotherapy is a major pillar in the treatment of solid tumors including breast cancer. However, epidemiological studies have revealed an increase in cardiac diseases approximately a decade after exposure of the thorax to ionizing irradiation, which might be related to vascular inflammation. Therefore, chronic inflammatory effects were examined in primary heart and lung endothelial cells (ECs) of mice after local heart irradiation. METHODS: Long-lasting effects on primary ECs of the heart and lung were studied 20-50 weeks after local irradiation of the heart of mice (8 and 16 Gy) in vivo by multiparameter flow cytometry using antibodies directed against cell surface markers related to proliferation, stemness, lipid metabolism, and inflammation, and compared to those induced by occlusion of the left anterior descending coronary artery. RESULTS: In vivo irradiation of the complete heart caused long-lasting persistent upregulation of inflammatory (HCAM, ICAM­1, VCAM-1), proliferation (CD105), and lipid (CD36) markers on primary heart ECs and an upregulation of ICAM­1 and VCAM­1 on primary ECs of the partially irradiated lung lobe. An artificially induced heart infarction induces similar effects with respect to inflammatory markers, albeit in a shorter time period. CONCLUSION: The long-lasting upregulation of prominent inflammatory markers on primary heart and lung ECs suggests that local heart irradiation induces chronic inflammation in the microvasculature of the heart and partially irradiated lung that leads to cardiac injury which might be related to altered lipid metabolism in the heart.


Asunto(s)
Aterosclerosis , Molécula 1 de Adhesión Intercelular , Ratones , Animales , Células Endoteliales/metabolismo , Células Endoteliales/patología , Molécula 1 de Adhesión Celular Vascular , Inflamación , Aterosclerosis/etiología , Tórax , Ratones Endogámicos C57BL
3.
ACS Appl Mater Interfaces ; 11(16): 14980-14985, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-30916543

RESUMEN

Titanium dioxide (TiO2) holds remarkable promises for developing current theranostic strategies. Anodic TiO2 nanostructures as a porous scaffold have offered a broad range of useful theranostic properties; however, previous attempts to generate single and uniform TiO2 one-dimensional nanocarriers from anodic nanotube arrays have resulted in a broad cluster size distribution of arbitrarily broken tubes that are unsuitable for therapeutic delivery systems due to poor biodistribution and the risk of introducing tissue inflammation. Here, we achieve well-separated, uniformly shaped anodic TiO2 nanotubes and nanocylinders through a time-varying electrochemical anodization protocol that leads to the generation of planar sheets of weakly connected nanotubes with a defined fracture point near the base. Subsequent sonication cleanly detaches the nanotubes from the base. Depending on the position of the fracture point, we can fabricate single-anodic nanocylinders that are open on both ends and nanotubes that are closed on one end. We proceed to show that anodic nanotubes and nanocylinders are nontoxic at therapeutic concentrations. When conjugated with the anticancer drug doxorubicin using a pH-responsive linker, they are readily internalized by cells and subsequently release their drug cargo into acidic intracellular compartments. Our results demonstrate that uniformly sized anodic TiO2 nanotubes and nanocylinders are suitable for subcellular delivery of therapeutic agents in cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA