Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Physiol Rep ; 11(22): e15858, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37985173

RESUMEN

Polycystic ovary syndrome (PCOS) is a common endocrine, reproductive, and metabolic disorder affecting females. The management of PCOS is challenging and current interventions are not enough to deal with all consequences of this syndrome. We explored the beneficial effect of combined sodium glucose co transporter-2 inhibitor (SGLT-2i); (empagliflozin) and metformin on hormonal and metabolic parameters in an animal model of PCOS and insulin resistance (IR). Forty adult female Wistar rats divided into five groups: control, PCOS-IR, PCOS-IR treated with metformin, PCOS-IR treated with empagliflozin, and PCOS-IR treated with combined metformin and empagliflozin. Single modality treatment with metformin or empagliflozin yielded significant improvement in body mass index, insulin resistance, lipid profile, sex hormones, inflammatory markers, and ovarian cystic follicles. Combined metformin with empagliflozin expressed further significant improvement in sex hormones, inflammatory markers with disappearance of ovarian cystic follicles. The superior significant improvement with combined treatment over the single modality was in line with significant improvement in the ovarian AMPKα-SIRT1 expression.


Asunto(s)
Resistencia a la Insulina , Metformina , Síndrome del Ovario Poliquístico , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Ratas , Femenino , Animales , Metformina/farmacología , Metformina/uso terapéutico , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Síndrome del Ovario Poliquístico/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Ratas Wistar , Insulina , Hormonas Esteroides Gonadales
2.
Chronobiol Int ; 40(8): 1004-1027, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37548004

RESUMEN

Environmental factors, such as sleep restriction, contribute to polycystic ovary syndrome (PCOS) by causing hyperinsulinemia, hyperandrogenism, insulin resistance, and oligo- or anovulation. This study aimed to evaluate the effects of circadian rhythm disruption on reproductive and metabolic functions and investigate the potential therapeutic benefits of MitoQ10 and hot tub therapy (HTT). Sixty female rats were divided into six groups: control, MitoQ10, HTT, and three groups with PCOS induced by continuous light exposure(L/L). The reproductive, endocrine, and structural manifestations ofL/L-induced PCOS were confirmed by serum biochemical measurements, ultrasound evaluation of ovarian size, and vaginal smear examination at week 14. Subsequently, the rats were divided into the L/L (untreated), L/L+MitoQ10-treated, andL/L+HTT-treated groups. At the end of week 22, all rats were sacrificed. Treatmentwith MitoQ10 or HTT partially reversed the reproductive, endocrine, and structural features of PCOS, leading to a decreased amplitude of isolated uterine contractions, ovarian cystic changes and size, and endometrial thickness. Furthermore, both interventions improved the elevated serum levels of anti-Mullerian hormone (AMH), kisspeptin, Fibulin-1, A disintegrin and metalloproteinase with thrombospondin motifs 19 (ADAMTS-19), lipid profile, homeostatic model assessment for insulin resistance (HOMA-IR), oxidative stress markers, androgen receptors (AR) and their transcription target genes, FKBP52 immunostaining in ovarian tissues, and uterine estrogen receptor alpha (ER-α) and PRimmunostaining. In conclusion, MitoQ10 supplementation and HTT demonstrated the potential for ameliorating metabolic, reproductive, and structural perturbations associated with PCOS induced by circadian rhythm disruption. These findings suggest a potential therapeutic role for these interventions in managing PCOS in women.


Asunto(s)
Hiperandrogenismo , Resistencia a la Insulina , Síndrome del Ovario Poliquístico , Humanos , Femenino , Ratas , Animales , Síndrome del Ovario Poliquístico/diagnóstico , Síndrome del Ovario Poliquístico/terapia , Calor , Ritmo Circadiano , Hiperandrogenismo/terapia
3.
Rep Biochem Mol Biol ; 12(3): 403-414, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38618269

RESUMEN

Background: Melatonin, the controlling hormone of the sleep-wake cycle, has acquired attention due to its role in immunomodulation, anti-inflammation, as well as its proapoptotic effects. Wnt/ß-catenin signaling can modulate cancer progression by promoting cell division and migration, while miR-let-7b may inhibit cell growth, migration, and invasion by affecting the function of adaptive immune cells. This work was designed to detect the effect of using melatonin as an immunomodulating therapeutic approach to control the progression of chemically induced hepatocellular carcinoma (HCC). Methods: Thirty male rats were equally divided into control, HCC, and melatonin-HCC groups. Animals in the HCC and melatonin-HCC groups were injected with diethylnitrosamine (intraperitoneal single dose) followed by repeated carbon-tetrachloride subcutaneous injection once weekly for six weeks. Melatonin was given from the first week of the study and continued during the process of HCC induction. Results: In the HCC group, the levels of tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), and Wnt/ß-catenin expression significantly increased, while there was a downregulation of microRNA Let7b. Melatonin administration reversed these changes, along with an increase in hepatic content of interleukin-2 (IL-2) and caspase-3. Conclusions: Melatonin exerted hepatic immunomodulating changes, in addition to proapoptotic and antiangiogenic effects, illustrated by increased IL-2, caspase-3, and decreased VEGF levels, respectively. Moreover, the use of melatonin during hepatocarcinogenesis positively modulated the disrupted expression of microRNA let7b and Wnt/ß-catenin significantly.

4.
Ann Anat ; 237: 151750, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33940119

RESUMEN

BACKGROUND: Oligospermia is one of the common causative factors of male infertility. Some medical and hormonal therapy for male infertility is typically with unsatisfactory outcome. Stem cell therapy has become a new therapeutic strategy for restoring function in addition to inducing proliferation and differentiation of malfunctioning germ cells. This work aims at investigating the potential ability of BM-MSCs to repair the spermatogenic arrest in oligospermic rat model. METHODS: In this work, a rat model of oligospermia was induced using two intraperitoneal injections of busulfan (15 mg/kg) with two weeks interval. Rats were divided into (i) donor group [source of the bone marrow mesenchymal stem cells (BM-MSCs) that were labelled and transfected with green fluorescent protein (GFP)] and (ii) experimental groups that were subdivided into: GpI (control), GpII (spermatogenic arrest model), GpIII (untreated rats), and GpIV (BM-MSCs treated rats). Estimation of the testicular weight, sperm count and motility % were performed. Histological and immunohistochemical staining for inducible nitric oxide synthase (iNOS) and caspase-3 (Cas-3) were conducted. Besides, the level of the testicular malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α) and testicular testosterone were estimated by ELISA. RESULTS: Oligospermic rats illustrated hypospermatogenesis of the seminiferous tubule with spermatocyte and spermatid arrest, focal thickening of the basement membrane and significant increase in germ cells apoptosis and testicular oxidative stress. Compared with the control, MDA and TNF-α were markedly elevated with marked suppression of the testicular testosterone. Intra-testicular injection of BM-MSCs substantially ameliorated these changes and effectively improved the sperm count and motility %. CONCLUSIONS: BM-MSCs improved the induced-spermatogenic arrest in the rat model mainly through anti-apoptotic and antioxidant paracrine effects.


Asunto(s)
Células Madre Mesenquimatosas , Oligospermia , Animales , Antioxidantes , Apoptosis , Humanos , Masculino , Ratas , Testículo
5.
Folia Histochem Cytobiol ; 59(2): 95-107, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33876830

RESUMEN

INTRODUCTION: Worldwide, nanoparticles especially gold-nanoparticles (Au-NPs) are widely used in medicine, cancer treatment and cosmetic industry. They are easily conjugated with different biomedical and biological agents and effortlessly absorbed with few side effects. The pars distalis of the pituitary gland is considered as the maestro of the endocrine peripheral glands since it secrets trophic hormones that controls their functions. 5-10% of the non-granular pars distalis cells are folliculo-stellate cells (FSCs) that support the granular cells' functions. The aim of the study was to explore the histological and the biochemical effects of repeated exposure to Au-NPs on the pars distalis in adult male albino rats with highlighting the impact on FSCs. MATERIAL AND METHODS: Thirty-six adult male albino rats were divided equally into control group and Au-NPs group (received 40 µg/kg/day of 11 ± 2 nm spherical Au-NPs orally for 2 weeks). Then, rats were euthanized and deposition of Au-NPs in pars distalis was investigated. Biochemical investigations and histological studies including hematoxylin and eosin staining, periodic acid Schiff's reaction, immunohistochemistry (IHC) for S-100, connexin 43 (Cx43) and Cytochrome-C (Cyt-C) as well as electron-microscopic and morphometric studies were carried out. RESULTS: The Au-NPs group demonstrated structural disorganization in the pars distalis, inflammation, congestion and increased extracellular PAS-positive colloid deposition due to the accumulation of Au-NPs. A significant increase in the immunoreactivity of S-100, Cx43 and Cyt-c, along with a significant increase in TNF-a, MDA, and bFGF content in the pituitary homogenates, was noted as compared to the control group. Ultrastructurally, degenerative changes were observed in the secretory cells. FSCs showed proliferation and increased phagocytic activity. CONCLUSIONS: Repetitive exposure of adult male albino rats to Au-NPs prompted the accumulation of these nanoparticles in the pars distalis that was accompanied by cellular degeneration and dysfunction of the secretory cell and proliferation of FSCs. Thus, monitoring of the pars distalis hormonal levels might be useful for early detection of some hazardous effects possibly associated with the use of gold-nanoparticles.


Asunto(s)
Nanopartículas del Metal/toxicidad , Adenohipófisis/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Oro/química , Oro/toxicidad , Inflamación/patología , Inflamación/fisiopatología , Masculino , Nanopartículas del Metal/química , Fagocitosis/efectos de los fármacos , Adenohipófisis/patología , Adenohipófisis/ultraestructura , Ratas Wistar
6.
Am J Physiol Heart Circ Physiol ; 320(4): H1290-H1302, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33513084

RESUMEN

Bone marrow-derived mesenchymal stem cells (BM-MSCs) have demonstrated potential in treating diabetic cardiomyopathy. However, patients with diabetes are on multiple drugs and there is a lack of understanding of how transplanted stem cells would respond in presence of such drugs. Metformin is an AMP kinase (AMPK) activator, the widest used antidiabetic drug. In this study, we investigated the effect of metformin on the efficacy of stem cell therapy in a diabetic cardiomyopathy animal model using streptozotocin (STZ) in male Wistar rats. To comprehend the effect of metformin on the efficacy of BM-MSCs, we transplanted BM-MSCs (1 million cells/rat) with or without metformin. Our data demonstrate that transplantation of BM-MSCs prevented cardiac fibrosis and promoted angiogenesis in diabetic hearts. However, metformin supplementation downregulated BM-MSC-mediated cardioprotection. Interestingly, both BM-MSCs and metformin treatment individually improved cardiac function with no synergistic effect of metformin supplementation along with BM-MSCs. Investigating the mechanisms of loss of efficacy of BM-MSCs in the presence of metformin, we found that metformin treatment impairs homing of implanted BM-MSCs in the heart and leads to poor survival of transplanted cells. Furthermore, our data demonstrate that metformin-mediated activation of AMPK is responsible for poor homing and survival of BM-MSCs in the diabetic heart. Hence, the current study confirms that a conflict arises between metformin and BM-MSCs for treating diabetic cardiomyopathy. Approximately 10% of the world population is diabetic to which metformin is prescribed very commonly. Hence, future cell replacement therapies in combination with AMPK inhibitors may be more effective for patients with diabetes.NEW & NOTEWORTHY Metformin treatment reduces the efficacy of mesenchymal stem cell therapy for cardiac repair during diabetic cardiomyopathy. Stem cell therapy in diabetics may be more effective in combination with AMPK inhibitors.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Cardiomiopatías Diabéticas/cirugía , Hipoglucemiantes/toxicidad , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Metformina/toxicidad , Miocardio/patología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/sangre , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/patología , Modelos Animales de Enfermedad , Fibrosis , Hemoglobina Glucada/metabolismo , Insulina/sangre , Masculino , Células Madre Mesenquimatosas/metabolismo , Miocardio/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Ratas Wistar , Recuperación de la Función , Estreptozocina
7.
Folia Histochem Cytobiol ; 58(3): 208-218, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32996119

RESUMEN

INTRODUCTION: Asherman syndrome (AS) is a symptomatic intrauterine adhesion caused by endometrial basal layer fibrosis as a result of either uterine cavity surgery or infection leading to many complications. There is a concern to repair the injured tissues by using bone marrow mesenchymal stem cells (BM-MSCs). We aimed in this study to develop an animal model of AS and evaluate the anti-inflammatory and anti-fibrotic effects of BM-MSCs in this model through histological, immunohistochemical, and morphometric studies. MATERIAL AND METHODS: Forty-two adult female adult albino rats were divided into (i) donor group composed of 2 rats used for isolation and propagation of BM-MSCs, and (ii) experimental groups: 40 rats equally divided into 4 groups: GpI (control), GpII (AS model), GpIII (BM-MSCs-treated AS rats), GpIV (untreated AS rats). Histological staining and immunohistochemical (IHC) detection of proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF), and nuclear factor-kappa beta (NF-kB) were performed. The results were evaluated by morphometric and statistical analysis. RESULTS: Significant endometrial thinning, fibrosis, and degeneration of the endometrial epithelium with a significant decrease in PCNA and VEGF immunoexpression and a significant increase in NF-kB immunoexpression were detected in GpII and GpIV groups. These changes were substantially reversed in BM-MSCs-treated animals. CONCLUSIONS: BM-MSCs treatment resulted in substantial improvement of intrauterine adhesion in the rat model of Asherman syndrome.


Asunto(s)
Fibrosis/terapia , Ginatresia/terapia , Inflamación/terapia , Células Madre Mesenquimatosas/metabolismo , Animales , Endometrio/metabolismo , Endometrio/patología , Femenino , Fibrosis/patología , Ginatresia/patología , Inflamación/patología , Trasplante de Células Madre Mesenquimatosas , Subunidad p50 de NF-kappa B/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ratas Wistar , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
Anat Cell Biol ; 53(2): 228-239, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32647090

RESUMEN

A 5-fluorouracil (5-FU) is used for cancer treatment despite its cytotoxic sequelae on healthy cells, especially the rapid proliferating ones. Intestinal mucositis is one of the most frequent chemotherapeutic debilitating sequelae. Rhubarb (Rh), an ancient herb, is known for its curing effect on gastrointestinal complications. This study aims to detect the role of aquaporin-4 (AQP-4), tumour necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and matrix metalloproteinase-9 (MMP-9) in 5-FU-induced ileal histological and biochemical changes and the potential therapeutic effect of Rh water extract on these changes in rats. A 45 rats were divided into 3 groups; control, 5-FU (single intraperitoneal injection of 150 mg/kg/rat) and Rh-treated (oral 20 mg/kg/day/rat for 8 days). The change in animals' weight, incidence of diarrhoea and AQP-4 and TNF-α values in ileal homogenates were measured. Ileal sections were subjected to hematoxylin and eosin stain, periodic acid Schiff (PAS)-reaction and MMP-9, NF-κB and AQP-4 immunohistochemical staining. A 5-FU group revealed marked ileal mucosal damage associated with a significant decrease in the mean body weight, AQP-4 level and area percent of PAS and AQP-4 positive reaction. Significant increase in the mean incidence of diarrhoea, TNF-α value and area percent of MMP-9 and NF-κB was detected. These changes were significantly corrected with Rh administration. A 5-FU resulted in severe ileal mucositis through TNF-α, NF-κB, MMP-9, and AQP-4 disturbances. Rh treatment was highly effective in preventing such mucositis.

9.
Ann Anat ; 222: 94-102, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30521949

RESUMEN

Management of diabetic wounds remains a major challenge in the medical field, mostly due to incompetent outcomes of treatments. Curcumin has been documented as anti-inflammatory, antioxidant, antimicrobial and antineoplastic agent in addition to wound healing activities. However, its poor aqueous solubility and impaired skin permeation handicap its topical pharmaceutical usage. Hydrogel loaded curcumin nanoparticle (Cur-NP/HG) could overcome this pitfall and enable extended topical delivery of curcumin. Rat model of diabetes mellitus (DM) type I was induced using single injection of 70mg/kg streptozotocin (STZ) followed by full thickness skin wound. Rats were divided into 4 groups. GpI: control non-diabetic, GpII: diabetic non-treated, GpIII: diabetic treated with topical curcumin hydrogel (Cur/HG) and GpIV: diabetic treated with topical Cur-NP/HG. Histological assessment of epidermal regeneration, dermo-epidermal junction, leukocyte infiltration and collagen deposition, in addition to immunohistochemical staining for vascular endothelial growth factor (VEGF) and aquaporin-3 (AQP3) were performed. Diabetic rat possessed impaired wound closure, persistence of inflammation and decreased collagen deposition as compared to non-diabetic control. Application of Cur/HG induced partial improvement of the healing process in diabetic rats. Cur-NP/HG treatment provoked obvious improvement of the healing process with complete re-epithelization, intact dermo-epidermal junction, reorganization of the dermis with significantly increased collagen deposition and VEGF and AQP3 expression. These results illustrated that Cur-NP/HG have effectively improved the healing process in diabetic skin wound with substantial differences in the wound healing kinetics compared to wounds that received Cur/HG.


Asunto(s)
Curcumina/uso terapéutico , Diabetes Mellitus Tipo 1/complicaciones , Cicatrización de Heridas/efectos de los fármacos , Administración Tópica , Animales , Acuaporina 3/biosíntesis , Colágeno/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/patología , Epitelio/efectos de los fármacos , Epitelio/crecimiento & desarrollo , Hidrogeles , Inmunohistoquímica , Masculino , Nanopartículas , Ratas , Regeneración/efectos de los fármacos , Piel/patología , Factor A de Crecimiento Endotelial Vascular/biosíntesis
10.
J Cell Physiol ; 234(7): 10942-10963, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30537190

RESUMEN

Wnt/ß-catenin signaling pathway plays a crucial role in diabetic cardiomyopathy (DCM), thus we aimed at investigating the effect of one therapeutic approach with resveratrol (RSV) given systemically and combined treatment of RSV with mesenchymal stem cells (MSCs) that was either RSV-preconditioned or not on Wnt/ß-catenin signaling pathway in streptozotocin-induced DCM, and to evaluate effects of RSV preconditioning on MSCs therapeutic potential. The rats were divided into control (C, n = 8), diabetic (DM, n = 8), diabetic treated with systemic RSV (DM-RSV, n = 8), diabetic treated with RSV and nonconditioned MSCs (DM-RSV-MSCs, n = 8), diabetic treated with RSV and RSV-incubated with MSCs (DM-RSV-MSCc, n = 8) and diabetic treated with RSV-conditioned MSCs (DM-MSCc, n = 8). Echocardiography (Echo) showed significant improvement of cardiac functions in all groups treated with RSV either systemic or added in culture media. Data of ejection fraction (EF%) of DM-RSV-MSCc (81.50; interquartile range [IQR], 80.00-83.00) was comparable to both DM-RSV-MSCs (77.50; IQR, 71.50-79.00), and DM-MSCc (71.50; IQR, 70.00-74.50). Histological examination of the left ventricles was performed for all groups. DM group revealed significant myocardial hypertrophy, apoptosis, interstitial fibrosis, and microvascular affection. All treated groups were associated, in variable degrees, with attenuation of cardiac hypertrophy and fibrosis, decreased area% for cardiac immunostaining of secreted frizzled-related protein (sFRP2) and Wnt/ß-catenin and improvement of the microvasculature. In conclusion, MSCs pretreated with resveratrol for 7 days showed increased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and combined use of RSV (systemically and in culture media) significantly could improve cardiac remodeling capacity of MSCs via attenuation of sFRP2-mediated fibrosis and the downstream Wnt/ß-catenin pathway.


Asunto(s)
Antioxidantes/uso terapéutico , Cardiomiopatías Diabéticas/terapia , Fibrosis/terapia , Células Madre Mesenquimatosas/efectos de los fármacos , Resveratrol/uso terapéutico , Animales , Desviación Ósea , Diabetes Mellitus Experimental/complicaciones , Masculino , Trasplante de Células Madre Mesenquimatosas , Distribución Aleatoria , Ratas , Ratas Wistar
11.
Int. j. morphol ; 36(3): 984-990, Sept. 2018. graf
Artículo en Inglés | LILACS | ID: biblio-954219

RESUMEN

Potent heptatotoxic chemicals such as carbon tetrachloride and thioacetamide (TAA) are used to evaluate hepatoprotective agents. Here we sought to investigate the potential protective effect of the antidiabetic and antioxidant drug, metformin against liver injury induced by TAA. Model group rats received several injections of TAA (200 mg/kg) before being sacrificed after 10 weeks and the protective group started the treatment two weeks prior to TAA injections and continued receiving both agents, metformin and TAA until the end of the experiment, week 10. Harvested liver tissues were examined using light microscopy and liver homogenates were assayed for oxidative and anti-oxidative stress markers that are known to be modulated in liver injury. Profound damage in the hepatic tissue of the model group such as liver fibrosis and destruction of hepatic architectures were revealed, which were protected by metformin comparable to the control group. TAA augmented the oxidative stress biomarker, malondialdehyde (MDA) and ameliorated the antioxidant superoxide dismutase (SOD), which were significantly (p<0.05) protected by metformin treatment. These results indicate that metformin effectively protects against TAA-induced hepatotoxicity in a rat model.


Para evaluar los agentes hepatoprotectores se usan químicos heptatotóxicos potentes como el tetracloruro de carbono y la tioacetamida (TAA). En este estudio tratamos de investigar el efecto protector potencial de la droga antidiabética y antioxidante, la metformina contra la lesión hepática inducida por TAA. Las ratas del grupo modelo recibieron varias inyecciones de TAA (200 mg/kg) durante 10 semanas antes de ser sacrificadas, y el grupo protector comenzó el tratamiento dos semanas antes de las inyecciones TAA y continuó recibiendo ambos agentes, metformina y TAA, hasta el final del experimento. Los tejidos hepáticos se examinaron usando microscopía óptica y se analizaron los homogeneizados hepáticos en busca de marcadores de estrés oxidativo y antioxidante los que están modulados en la lesión hepática. Se observaron daños significativos en el tejido hepático del grupo modelo como la fibrosis hepática y destrucción de la arquitectura hepática, que estaban protegidas por la metformina comparable al grupo control. TAA aumentó el biomarcador de estrés oxidativo, malondialdehído (MDA) y mejoró la enzima antioxidante superóxido dismutasa (SOD), que fueron protegidas significativamente (p <0,05) por el tratamiento con metformina. Estos resultados indican que la metformina protege eficazmente contra la hepatotoxicidad inducida por TAA en un modelo de rata.


Asunto(s)
Animales , Masculino , Ratas , Tioacetamida/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Hipoglucemiantes/administración & dosificación , Metformina/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA