Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
JCI Insight ; 9(5)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38271096

RESUMEN

Hemorrhagic cystitis may be induced by infection, radiation therapy, or medications or may be idiopathic. Along with hemorrhagic features, symptoms include urinary urgency and frequency, dysuria (painful urination), and visceral pain. Cystitis-induced visceral pain is one of the most challenging types of pain to treat, and an effective treatment would address a major unmet medical need. We assessed the efficacy of a purine nucleoside phosphorylase inhibitor, 8-aminoguanine (8-AG), for the treatment of hemorrhagic/ulcerative cystitis. Lower urinary tract (LUT) function and structure were assessed in adult Sprague-Dawley rats, treated chronically with cyclophosphamide (CYP; sacrificed day 8) and randomized to daily oral treatment with 8-AG (begun 14 days prior to CYP induction) or its vehicle. CYP-treated rats exhibited multiple abnormalities, including increased urinary frequency and neural mechanosensitivity, reduced bladder levels of inosine, urothelial inflammation/damage, and activation of spinal cord microglia, which is associated with pain hypersensitivity. 8-AG treatment of CYP-treated rats normalized all observed histological, structural, biochemical, and physiological abnormalities. In cystitis 8-AG improved function and reduced both pain and inflammation likely by increasing inosine, a tissue-protective purine metabolite. These findings demonstrate that 8-AG has translational potential for reducing pain and preventing bladder damage in cystitis-associated LUT dysfunctions.


Asunto(s)
Cistitis Hemorrágica , Cistitis , Dolor Visceral , Ratas , Animales , Purina-Nucleósido Fosforilasa , Ratas Sprague-Dawley , Cistitis/tratamiento farmacológico , Cistitis/patología , Inflamación , Hemorragia/tratamiento farmacológico , Inosina
2.
Artículo en Inglés | MEDLINE | ID: mdl-37463319

RESUMEN

BACKGROUND: Lower urinary tract syndrome (LUTS) is a group of urinary tract symptoms and signs which can include urinary incontinence. Advancing age is a major risk factors for LUTS; however the underlying biochemical mechanisms of age-related LUTS remain unknown. HX (hypoxanthine) is a purine metabolite associated with generation of tissue damaging reactive oxygen species (ROS). This study tested the hypothesis that exposure of the adult bladder to HX-ROS over time damages key LUT elements, mimicking qualitatively some of the changes observed with aging. METHODS: Adult 3-month-old female Fischer 344 (F344) rats were treated with vehicle or HX (10 mg/kg/day; 3 weeks) administered in drinking water. Targeted purine metabolomics and molecular approaches were used to assess purine metabolites and biomarkers for oxidative stress and cellular damage. Biomechanical approaches assessed LUT structure and measurements of LUT function (using custom-metabolic cages and cystometry) were also employed. RESULTS: HX exposure increased biomarkers indicative of oxidative stress, pathophysiological ROS production and depletion of cellular energy with declines in NAD + levels. Moreover, HX treatment caused bladder remodeling and decreased the intercontraction interval and leak point pressure (surrogate measure to assess stress urinary incontinence). CONCLUSIONS: These studies provide evidence that in adult rats chronic exposure to HX causes changes in voiding behavior and in bladder structure resembling alterations observed with aging. These results suggest that increased levels of uro-damaging HX were associated with ROS/oxidative stress-associated cellular damage which may be central to age-associated development of LUTS, opening up potential opportunities for geroscience-guided interventions.

3.
Am J Physiol Regul Integr Comp Physiol ; 323(6): R889-R899, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36250635

RESUMEN

Parasympathetic nerve-mediated contractions of detrusor smooth muscle are generated by ATP and acetylcholine (ACh) release from efferent nerve terminals. In humans, ACh is responsible for detrusor contractions in normal human bladders, whereas ATP has an additional role in overactive bladder pathologies. The ATP metabolite, adenosine, relaxes nerve-mediated contractions, with a potential action via presynaptic adenosine A1 receptor activation and subsequent suppression of neuronal ATP release. We investigated the effect of A1 receptor activation and downstream cAMP-dependent pathways on nerve-mediated ATP and ACh release, and detrusor contraction in mouse detrusor. Bladders from male C57BL/6 mice (12 wk) were used for in vitro experiments. Upon electrical field stimulation of intact preparations (detrusor and mucosal layers), ATP or ACh release was measured simultaneously with tension recordings. Activation of A1 receptors by adenosine or exogenous agonists reduced the lower frequency component of nerve-mediated contractions and neuronal ATP release. The A1 receptor antagonist abolished these effects. A1 receptor activation inhibits adenylyl cyclase (AC) activity and cAMP generation. The effect of A1 receptor activation was mimicked by a PKA antagonist but not by modulators of exchange proteins activated by cAMP, demonstrating that modulation of nerve-mediated ATP release is via PKA. Adenosine had no effect on ACh release or the higher frequency component of nerve-mediated contractions. Differential regulation of neurotransmitter release is possible at the detrusor nerve-muscle junction, as demonstrated by A1 receptor activation, and downstream inhibition of AC, cAMP generation, and PKA. The ability to specifically attenuate ATP release offers a potential to target purinergic motor pathways enhanced in overactive bladder pathologies.


Asunto(s)
Vejiga Urinaria Hiperactiva , Animales , Humanos , Masculino , Ratones , Acetilcolina/metabolismo , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Estimulación Eléctrica , Ratones Endogámicos C57BL , Contracción Muscular/fisiología , Neurotransmisores/farmacología , Receptores Purinérgicos P1 , AMP Cíclico/metabolismo
4.
Int Neurourol J ; 26(2): 111-118, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35793989

RESUMEN

PURPOSE: Lower urinary tract symptoms are known to significantly increase with age, negatively impacting quality of life and self-reliance. The urothelium fulfills crucial tasks, serving as a barrier protecting the underlying bladder tissue from the harsh chemical composition of urine, and exhibits signaling properties via the release of mediators within the bladder wall that affect bladder functioning. Aging is associated with detrimental changes in cellular health, in part by increasing oxidative stress in the bladder mucosa, and more specifically the urothelium. This, in turn, may impact urothelial mitochondrial health and bioenergetics. METHODS: We collected mucosal tissue samples from both young (3-4 months old) and aged (25-30 months old) rats. Tissue was evaluated for p21-Arc, nitrotyrosine, and cytochrome C expression by western immunoblotting. Urothelial cells were cultured for single-cell imaging to analyze basal levels of reactive oxygen species and the mitochondrial membrane potential. Mitochondrial bioenergetics and cellular respiration were investigated by the Seahorse assay, and measurements of adenosine triphosphate release were made using the luciferin-luciferase assay. RESULTS: Aging was associated with a significant increase in biomarkers of cellular senescence, oxidative stress, and basal levels of reactive oxygen species. The mitochondrial membrane potential was significantly lower in urothelial cell cultures from aged animals, and cultures from aged animals showed a significant decrease in mitochondrial bioenergetics. CONCLUSION: Aging-related increases in oxidative stress and excessive reactive oxygen species may be contributing factors underlying lower urinary tract symptoms in older adults. The mechanisms outlined in this study could be utilized to identify novel pharmaceutical targets to improve aging-associated bladder dysfunction.

5.
Exp Physiol ; 107(4): 350-358, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35165960

RESUMEN

NEW FINDINGS: What is the central question of this study? Is the frequency dependence of co-transmitter release from postganglionic nerve fibres different for each transmitter? What is the main finding and its importance? Release of co-transmitters from the parasympathetic supply to detrusor smooth muscle can be independently regulated. This offers a targeted drug model to reduce selectively the release of transmitter associated with human pathologies (ATP) and may also be applicable to other smooth muscle-based disorders of visceral tissues. ABSTRACT: Nerve-mediated contractions of detrusor smooth muscle are mediated by acetylcholine (ACh) and ATP release in most animals. However, with the normal human bladder, only ACh is a functional transmitter, but in benign pathologies such as overactive bladder (OAB), ATP re-emerges as a secondary transmitter. The selective regulation of ATP release offers a therapeutic approach to manage OAB, in contrast to current primary strategies that target ACh actions. However, the release characteristics of nerve-mediated ACh and ATP are poorly defined and this study aimed to measure the frequency dependence of ACh and ATP release and determine if selective regulation of ATP or ACh was possible. Experiments were carried out in vitro with mouse detrusor with nerve-mediated ATP and ACh release measured simultaneously with tension recording. ATP was released in two frequency-dependent components, both at lower frequencies (mid-range 0.4 and 5.5 Hz stimulation) compared to a single compartment release of ACh at 14 Hz. Intervention with the phosphodiesterase type-5 inhibitor sildenafil attenuated ATP release, equally from both components, but had no effect on ACh release. These data demonstrate that nerve-mediated ACh and ATP release characteristics are distinct and may be separately manipulated. This offers a potential targeted drug model to manage benign lower urinary tract conditions such as OAB.


Asunto(s)
Acetilcolina , Contracción Muscular , Acetilcolina/farmacología , Adenosina Trifosfato/farmacología , Animales , Ratones , Contracción Muscular/fisiología , Músculo Liso/fisiología , Vejiga Urinaria
6.
J Pathol ; 256(4): 442-454, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34936088

RESUMEN

Benign prostatic hyperplasia (BPH) is a feature of ageing males. Up to half demonstrate bladder outlet obstruction (BOO) with associated lower urinary tract symptoms (LUTS) including bladder overactivity. Current therapies to reduce obstruction, such as α1-adrenoceptor antagonists and 5α-reductase inhibitors, are not effective in all patients. The phosphodiesterase-5 inhibitor (PDE5I) tadalafil is also approved to treat BPH and LUTS, suggesting a role for nitric oxide (NO• ), soluble guanylate cyclase (sGC), and cGMP signalling pathways. However, PDE5I refractoriness can develop for reasons including nitrergic nerve damage and decreased NO• production, or inflammation-related oxidation of the sGC haem group, normally maintained in a reduced state by the cofactor cytochrome-b5-reductase 3 (CYB5R3). sGC activators, such as cinaciguat (BAY 58-2667), have been developed to enhance sGC activity in the absence of NO• or when sGC is oxidised. Accordingly, their effects on the prostate and LUT function of aged mice were evaluated. Aged mice (≥24 months) demonstrated a functional BPH/BOO phenotype, compared with adult animals (2-12 months), with low, delayed voiding responses and elevated intravesical pressures as measured by telemetric cystometry. This was consistent with outflow tract histological and molecular data that showed urethral constriction, increased prostate weight, greater collagen deposition, and cellular hyperplasia. All changes in aged animals were attenuated by daily oral treatment with cinaciguat for 2 weeks, without effect on serum testosterone levels. Cinaciguat had only transient (1 h) cardiovascular effects with oral gavage, suggesting a positive safety profile. The benefit of cinaciguat was suggested by its reversal of an overactive cystometric profile in CYB5R3 smooth muscle knockout mice that mirrors a profile of oxidative dysfunction where PDE5I may not be effective. Thus, the aged male mouse is a suitable model for BPH-induced BOO and cinaciguat has a demonstrated ability to reduce prostate-induced obstruction and consequent effects on bladder function. © 2021 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Hiperplasia Prostática , Animales , Humanos , Masculino , Ratones , Óxido Nítrico/metabolismo , Oxidorreductasas , Próstata/metabolismo , Hiperplasia Prostática/tratamiento farmacológico , Guanilil Ciclasa Soluble
7.
Neurourol Urodyn ; 39(1): 108-115, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31579964

RESUMEN

AIM: To investigate the role of p38 MAP kinase in lower urinary tract dysfunction in mice with spinal cord injury (SCI). METHODS: Cystometry and external urethral sphincter-electromyography were performed under an awake condition in 4-week SCI female mice. Two weeks after SCI, a catheter connected to an osmotic pump filled with a p38 mitogen-activated protein kinase (MAPK) inhibitor or artificial cerebrospinal fluid (CSF) was implanted into the intrathecal space of L6-S1 spinal cord for continuous intrathecal instillation at infusion rate of 0.51 µL/h for 2 weeks before the urodynamic study. L6 dorsal root ganglia were then removed from CSF and p38 MAPK inhibitor-treated SCI mice as well as from CSF-treated normal (spinal intact) mice to evaluate the levels of transient receptor potential cation channel subfamily V member 1 (TRPV1), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS) transcripts by real-time polymerase chain reaction. RESULTS: In p38 MAPK inhibitor-treated SCI mice, nonvoiding contractions during bladder filling, bladder capacity, and post-void residual volume were significantly reduced while micturition pressure and voiding efficiency were significantly increased in comparison to these measurements in CSF-treated SCI mice. The expression of TRPV1, TNF-α, and iNOS messenger RNA was increased in SCI mice compared with expression in spinal intact mice and significantly decreased after p38 MAPK inhibitor treatment. CONCLUSIONS: The p38 MAPK signaling pathway in bladder sensory neurons or in the spinal cord plays an important role in storage and voiding problems such as detrusor overactivity and inefficient voiding after SCI.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Traumatismos de la Médula Espinal/fisiopatología , Trastornos Urinarios/fisiopatología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Electromiografía , Femenino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Óxido Nítrico Sintasa de Tipo II/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Traumatismos de la Médula Espinal/complicaciones , Canales Catiónicos TRPV/biosíntesis , Canales Catiónicos TRPV/genética , Factor de Necrosis Tumoral alfa , Uretra/fisiopatología , Vejiga Urinaria/inervación , Vejiga Urinaria/fisiopatología , Trastornos Urinarios/etiología , Urodinámica/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
8.
Br J Pharmacol ; 176(24): 4720-4730, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31430833

RESUMEN

BACKGROUND AND PURPOSE: This study aims to characterise the molecular mechanisms that determine variability of atropine resistance of nerve-mediated contractions in human and guinea pig detrusor smooth muscle. EXPERIMENTAL APPROACH: Atropine resistance of nerve-mediated contractions and the role of P2X1 receptors, were assessed in isolated preparations from guinea pigs and also humans with or without overactive bladder syndrome, from which the mucosa was removed. Nerve-mediated ATP release was measured directly with amperometric ATP-sensitive electrodes. Ecto-ATPase activity of guinea pig and human detrusor samples was measured in vitro by measuring the concentration-dependent rate of ATP breakdown. The transcription of ecto-ATPase subtypes in human samples was measured by qPCR. KEY RESULTS: Atropine resistance was greatest in guinea pig detrusor, absent in human tissue from normally functioning bladders, and intermediate in human overactive bladder. Greater atropine resistance correlated with reduction of contractions by the ATP-diphosphohydrolase apyrase, directly implicating ATP in their generation. E-NTPDase-1 was the most abundantly transcribed ecto-ATPase of those tested, and transcription was reduced in tissue from human overactive, compared to normal, bladders. E-NTPDase-1 enzymic activity was inversely related to the magnitude of atropine resistance. Nerve-mediated ATP release was continually measured and varied with stimulation frequency over the range of 1-16 Hz. CONCLUSION AND IMPLICATIONS: Atropine resistance in nerve-mediated detrusor contractions is due to ATP release and its magnitude is inversely related to E-NTPDase-1 activity. ATP is released under different stimulation conditions compared with ACh, implying different routes for their release.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Contracción Muscular/efectos de los fármacos , Músculo Liso/fisiología , Vejiga Urinaria Hiperactiva/metabolismo , Vejiga Urinaria/fisiología , Animales , Atropina/farmacología , Estimulación Eléctrica , Cobayas , Humanos , Técnicas In Vitro , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Receptores Purinérgicos P2X1/metabolismo , Especificidad de la Especie , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo
9.
Br J Pharmacol ; 176(13): 2227-2237, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30924527

RESUMEN

BACKGROUND AND PURPOSE: PDE inhibitors such as sildenafil alleviate lower urinary tract symptoms; however, a complete understanding of their action on the bladder remains unclear. We are investigating the effects of sildenafil, on post and preganglionic nerve-mediated contractions of the mouse bladder, and neuronal and urothelial ATP release. EXPERIMENTAL APPROACH: Bladders were used from young (12 weeks), aged (24 months), and spinal cord transected (SCT), mice, for in vitro contractility experiments. An arterially perfused in situ whole mouse model was used to record bladder pressure. Nerve-mediated contractions were generated by electrical field stimulation (EFS) of postganglionic nerve terminals or the pelvic nerve. ATP release during EFS in intact detrusor strips, and during stretch of isolated mucosa strips, was measured using a luciferin-luciferase assay. KEY RESULTS: Sildenafil (20 µM) inhibited nerve-mediated contractions in young mice, with an increase in f1/2 values in force-frequency relationships, demonstrating a greater effect at low frequencies. Sildenafil reduced the atropine-resistant, purinergic component of nerve-mediated contractions, and suppressed neuronal ATP release upon EFS in vitro. Sildenafil reduced the preganglionic pelvic nerve stimulated bladder pressure recordings in situ; comparable to in vitro experiments. Sildenafil reduced stretch-induced urothelial ATP release. Sildenafil also relaxed nerve-mediated contractions in aged and SCT mice. CONCLUSION AND IMPLICATIONS: Sildenafil has a greater effect on the low-frequency, purinergic-mediated contractions and suppresses neuronal ATP release. In addition, sildenafil reduces stretch-induced urothelial ATP release. These results demonstrate a novel action of sildenafil to selectively inhibit ATP release from nerve terminals innervating detrusor smooth muscle and the urothelium.


Asunto(s)
Adenosina Trifosfato/metabolismo , Inhibidores de Fosfodiesterasa 5/farmacología , Citrato de Sildenafil/farmacología , Médula Espinal/efectos de los fármacos , Vejiga Urinaria/efectos de los fármacos , Urotelio/efectos de los fármacos , Animales , Masculino , Ratones Endogámicos C57BL , Músculo Liso/efectos de los fármacos , Músculo Liso/inervación , Músculo Liso/metabolismo , Músculo Liso/fisiología , Médula Espinal/metabolismo , Médula Espinal/fisiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Vejiga Urinaria/inervación , Vejiga Urinaria/metabolismo , Vejiga Urinaria/fisiología , Urotelio/metabolismo
10.
BJU Int ; 124(1): 163-173, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30636087

RESUMEN

OBJECTIVES: To investigate the influence of low-dose sildenafil, a phosphodiesterase type 5 inhibitor (PDE5-I), on the function of the mouse lower urinary tract (LUT). MATERIALS AND METHODS: Adult male mice were decerebrated and arterially perfused with a carbogenated Ringer's solution to establish the decerebrate arterially perfused mouse (DAPM). To allow distinction between central neural and peripheral actions of sildenafil, experiments were conducted in both the DAPM and in a 'pithed' DAPM, which has no functional brainstem or spinal cord. The action of systemic and intrathecal sildenafil on micturition was assessed in urethane-anaesthetised mice. RESULTS: In the DAPM, systemic perfusion of sildenafil (30 pm) decreased the voiding threshold pressure [to a mean (sem) 84.7 (3.8)% of control] and increased bladder compliance [to a mean (sem) 140.2 (8.3)% of control, an effect replicated in the pithed DAPM]. Sildenafil was without effect on most voiding variables but significantly increased the number of bursts of the external urethral sphincter (EUS) per void in DAPM [to a mean (sem) 130.1 (6.9)% of control at 30 pm] and in urethane-anaesthetised mice [to a mean (sem) 117.5 (5.8)% of control at 14 ng/kg]. Sildenafil (10 and 30 pm) increased pelvic afferent activity during both bladder filling and the isovolumetric phase [to a mean (sem) 205.4 (30.2)% of control at 30 pm]. Intrathecal application of sildenafil (5 µL of either 150 pm or 1.5 nm) did not alter cystometry and EUS-electromyography variables in urethane-anaesthetised mice. CONCLUSIONS: Low-dose sildenafil increases bladder compliance, increases pelvic nerve afferent activity, and augments the bursting activity of the EUS. We propose that the novel actions on afferent traffic and sphincter control may contribute to its beneficial actions to restore storage and voiding efficiency in LUT dysfunction.


Asunto(s)
Inhibidores de Fosfodiesterasa 5/farmacología , Citrato de Sildenafil/farmacología , Uretra/efectos de los fármacos , Vejiga Urinaria/efectos de los fármacos , Micción/efectos de los fármacos , Vías Aferentes/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Masculino , Ratones , Contracción Muscular/fisiología , Músculo Liso/fisiología , Inhibidores de Fosfodiesterasa 5/administración & dosificación , Presión , Citrato de Sildenafil/administración & dosificación , Vejiga Urinaria/fisiología
11.
Neurourol Urodyn ; 38(2): 572-581, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30575113

RESUMEN

AIM: Chronic stress exacerbates the symptoms of most pain disorders including interstitial cystitis/bladder pain syndrome (IC/BPS). Abnormalities in urothelial cells (UTC) occur in this debilitating bladder condition. The sequence of events that might link stress (presumably through increased sympathetic nervous system-SNS activity) to urothelial dysfunction are unknown. Since autonomic dysregulation, mitochondrial dysfunction, and oxidative stress all occur in chronic pain, we investigated whether chronic psychological stress initiated a cascade linking these three dysfunctions. METHODS: Adult female Wistar Kyoto rats were exposed to 10 days of water avoidance stress (WAS). Bladders were then harvested for Western blot and single cell imaging in UTC cultures. RESULTS: UTC from WAS rats exhibited depolarized mitochondria membrane potential (Ψm ∼30% more depolarized compared to control), activated AMPK and altered UT mitochondria bioenergetics. Expression of the fusion protein mitofusion-2 (MFN-2) was upregulated in the mucosa, suggesting mitochondrial structural changes consistent with altered cellular metabolism. Intracellular calcium levels were elevated in cultured WAS UTC, consistent with impaired cellular function. Stimulation of cultured UTC with alpha-adrenergic (α-AR) receptor agonists increased reactive oxidative species (ROS) production, suggesting a direct action of SNS activity on UTC. Treatment of rats with guanethidine to block SNS activity prevented most of WAS-induced changes. CONCLUSIONS: Chronic stress results in persistent sympathetically mediated effects that alter UTC mitochondrial function. This may impact the urothelial barrier and signaling, which contributes to bladder dysfunction and pain. This is the first demonstration, to our knowledge, of a potential autonomic mechanism directly linking stress to mitochondrial dysfunction.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Cistitis Intersticial/fisiopatología , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Urotelio/fisiopatología , Animales , Sistema Nervioso Autónomo/metabolismo , Cistitis Intersticial/metabolismo , Modelos Animales de Enfermedad , Femenino , Ratas , Ratas Endogámicas WKY , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Urotelio/metabolismo
13.
Neurourol Urodyn ; 37(8): 2452-2461, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29806700

RESUMEN

AIMS: To determine the role of p75 neurotrophin receptor (p75NTR ) and the therapeutic effect of the selective small molecule p75NTR modulator, LM11A-31, in spinal cord injury (SCI) induced lower urinary tract dysfunction (LTUD) using a mouse model. METHODS: Adult female T8 -T9 transected mice were gavaged daily with LM11A-31 (100 mg/kg) for up to 6 weeks, starting 1 day before, or 7 days following injury. Mice were evaluated in vivo using urine spot analysis, cystometrograms (CMGs), and external urethral sphincter (EUS) electromyograms (EMGs); and in vitro using histology, immunohistochemistry, and Western blot. RESULTS: Our studies confirm highest expression of p75NTRs in the detrusor layer of the mouse bladder and lamina II region of the dorsal horn of the lumbar-sacral (L6 -S1 ) spinal cord which significantly decreased following SCI. LM11A-31 prevented or ameliorated the detrusor sphincter dyssynergia (DSD) and detrusor overactivity (DO) in SCI mice, significantly improving bladder compliance. Furthermore, LM11A-31 treatment blocked the SCI-related urothelial damage and bladder wall remodeling. CONCLUSION: Drugs targeting p75NTRs can moderate DSD and DO in SCI mice, may identify pathophysiological mechanisms, and have therapeutic potential in SCI patients.


Asunto(s)
Isoleucina/análogos & derivados , Síntomas del Sistema Urinario Inferior/tratamiento farmacológico , Síntomas del Sistema Urinario Inferior/etiología , Morfolinas/uso terapéutico , Receptor de Factor de Crecimiento Nervioso/efectos de los fármacos , Traumatismos de la Médula Espinal/complicaciones , Enfermedades de la Vejiga Urinaria/tratamiento farmacológico , Enfermedades de la Vejiga Urinaria/etiología , Animales , Electromiografía , Isoleucina/uso terapéutico , Ratones , Uretra/fisiopatología , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Vejiga Urinaria Hiperactiva/etiología
14.
Neurourol Urodyn ; 37(8): 2441-2451, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29806709

RESUMEN

AIM: To determine the efficacy of human relaxin-2 (hRLX2) in reversing radiation-induced bladder fibrosis and lower urinary tract dysfunction (LUTD). Radiation cystitis is a consequence of radiotherapy for pelvic malignancies. Acutely, irradiation leads to reactive oxygen/nitrogen species in urothelial cells, apoptosis, barrier disruption, and inflammation. Chronically, this results in collagen deposition, bladder fibrosis, and attenuated storage and voiding functions. In severe cases, cystectomies are performed as current therapies do not reverse fibrosis. METHODS: We developed a mouse model for selective bladder irradiation (10 Gray; 1 Gy = 100 rads) resulting in chronic fibrosis within 6 weeks, with decreased bladder compliance, contractility, and overflow incontinence. Seven weeks post-irradiation, female C57Bl/6 mice were continuously infused with hRLX2 (400 µg/kg/day/14 days) or vehicle (saline) via subcutaneous osmotic pumps. Mice were evaluated in vivo using urine spot analysis, cystometrograms and external urethral sphincter electromyograms; and in vitro using length-tension measurements, Western blots, histology, and immunohistochemistry. RESULTS: hRLX2 reversed fibrosis, decreased collagen content, improved bladder wall architecture, and increased bladder compliance, detrusor smooth muscle Cav1.2 expression and detrusor contractility in mice with chronic radiation cystitis. hRLX2 treatment outcomes were likely caused by the activation of RXFP1/2 receptors which are expressed on the detrusor. CONCLUSION: hRLX2 may be a new therapeutic option for rescuing bladders with chronic radiation cystitis.


Asunto(s)
Cistitis/tratamiento farmacológico , Cistitis/patología , Relaxina/uso terapéutico , Enfermedades de la Vejiga Urinaria/tratamiento farmacológico , Vejiga Urinaria/patología , Vejiga Urinaria/efectos de la radiación , Animales , Canales de Calcio Tipo L/biosíntesis , Canales de Calcio Tipo L/genética , Colágeno/metabolismo , Cistitis/etiología , Electromiografía , Femenino , Fibrosis , Humanos , Ratones , Ratones Endogámicos C57BL , Contracción Muscular/fisiología , Traumatismos por Radiación/complicaciones , Traumatismos por Radiación/tratamiento farmacológico , Proteínas Recombinantes , Uretra/fisiopatología , Vejiga Urinaria/metabolismo , Enfermedades de la Vejiga Urinaria/etiología , Incontinencia Urinaria/tratamiento farmacológico , Incontinencia Urinaria/etiología
15.
Front Syst Neurosci ; 12: 13, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29706873

RESUMEN

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic disease of unknown etiology. A naturally occurring disease termed feline interstitial cystitis (FIC) reproduces many features of IC/BPS patients. To gain insights into mechanisms underlying IC/BPS, we investigated pathological changes in the lamina propria (LP) of the bladder and proximal urethra in cats with FIC, using histological and molecular methods. Compared to control cat tissue, we found an increased number of de-granulated mast cells, accumulation of leukocytes, increased cyclooxygenase (COX)-1 expression in the bladder LP, and increased COX-2 expression in the urethra LP from cats with FIC. We also found increased suburothelial proliferation, evidenced by mucosal von Brunn's nests, neovascularization and alterations in elastin content. Scanning electron microscopy revealed normal appearance of the superficial urethral epithelium, including the neuroendocrine cells (termed paraneurons), in FIC urethrae. Together, these histological findings suggest the presence of chronic inflammation of unknown origin leading to tissue remodeling. Since the mucosa functions as part of a "sensory network" and urothelial cells, nerves and other cells in the LP are influenced by the composition of the underlying tissues including the vasculature, the changes observed in the present study may alter the communication of sensory information between different cellular components. This type of mucosal signaling can also extend to the urethra, where recent evidence has revealed that the urethral epithelium is likely to be part of a signaling system involving paraneurons and sensory nerves. Taken together, our data suggest a more prominent role for chronic inflammation and tissue remodeling than previously thought, which may result in alterations in mucosal signaling within the urinary bladder and proximal urethra that may contribute to altered sensations and pain in cats and humans with this syndrome.

16.
Neurourol Urodyn ; 37(6): 1889-1896, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29516546

RESUMEN

AIMS: To investigate the role of nerve growth factor (NGF) in lower urinary tract dysfunction in mice with spinal cord injury (SCI). METHODS: Using 4-week SCI mice, single-filling cystometry and external urethral sphincter (EUS)-electromyography were performed under an awake condition. In some SCI mice, anti-NGF antibodies (10 µg/kg/h) were administered for 1 or 2 weeks before the urodynamic study. NGF levels in the bladder and L6/S1 spinal cord were assayed by ELISA. The transcript levels of P2X receptors and TRP channels in L6/S1 dorsal root ganglia (DRG) were measured by RT-PCR. RESULTS: In SCI mice, the area under the curve of non-voiding contractions (NVCs) during the storage phase was significantly decreased in both 1- and 2-week anti-NGF antibody-treated SCI groups. However, EUS-electromyogram parameters during voiding were not altered by the treatment. Bladder mucosal and spinal NGF levels were decreased after 2 weeks of anti-NGF antibody treatment. TRPA1 and TRPV1 transcripts in L6/S1 DRG were significantly decreased after 1- or 2-week anti-NGF treatment. CONCLUSIONS: In SCI mice, NGF is involved in the emergence of NVCs in association with increased expression of TRP receptors that are predominantly found in C-fiber afferent pathways. Thus, NGF targeting treatments could be effective for treating storage problems such as detrusor overactivity after SCI.


Asunto(s)
Factor de Crecimiento Nervioso/antagonistas & inhibidores , Traumatismos de la Médula Espinal/complicaciones , Enfermedades Uretrales/tratamiento farmacológico , Enfermedades de la Vejiga Urinaria/tratamiento farmacológico , Animales , Anticuerpos Bloqueadores/uso terapéutico , Electromiografía , Femenino , Ganglios Espinales/metabolismo , Ratones , Ratones Endogámicos C57BL , Membrana Mucosa/efectos de los fármacos , Membrana Mucosa/metabolismo , Fibras Nerviosas Amielínicas/efectos de los fármacos , Fibras Nerviosas Amielínicas/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Receptores Purinérgicos P2X/metabolismo , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/metabolismo , Uretra/metabolismo , Uretra/fisiopatología , Enfermedades Uretrales/etiología , Enfermedades Uretrales/fisiopatología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo , Enfermedades de la Vejiga Urinaria/etiología , Enfermedades de la Vejiga Urinaria/fisiopatología
17.
Am J Physiol Renal Physiol ; 313(3): F796-F804, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28637786

RESUMEN

We examined bladder and urethral sphincter activity in mice with or without spinal cord injury (SCI) after C-fiber afferent desensitization induced by capsaicin pretreatment and changes in electrophysiological properties of mouse bladder afferent neurons 4 wk after SCI. Female C57BL/6N mice were divided into four groups: 1) spinal intact (SI)-control, 2) SI-capsaicin pretreatment (Cap), 3) SCI-control, and 4) SCI-Cap groups. Continuous cystometry and external urethral sphincter (EUS)-electromyogram (EMG) were conducted under an awake condition. In the Cap groups, capsaicin (25, 50, or 100 mg/kg) was injected subcutaneously 4 days before the experiments. In the SI-Cap group, 100 mg/kg capsaicin pretreatment significantly increased bladder capacity and decreased the silent period duration of EUS/EMG compared with the SI-control group. In the SCI-Cap group, 50 and 100 mg/kg capsaicin pretreatment decreased the number of nonvoiding contractions (NVCs) and the duration of reduced EUS activity during voiding, respectively, compared with the SCI-control group. In SCI mice, hexamethonium, a ganglionic blocker, almost completely blocked NVCs, suggesting that they are of neurogenic origin. Patch-clamp recordings in capsaicin-sensitive bladder afferent neurons from SCI mice showed hyperexcitability, which was evidenced by decreased spike thresholds and increased firing rate compared with SI mice. These results indicate that capsaicin-sensitive C-fiber afferent pathways, which become hyperexcitable after SCI, can modulate bladder and urethral sphincter activity in awake SI and SCI mice. Detrusor overactivity as shown by NVCs in SCI mice is significantly but partially dependent on capsaicin-sensitive C-fiber afferents, whereas the EUS relaxation during voiding is enhanced by capsaicin-sensitive C-fiber bladder afferents in SI and SCI mice.


Asunto(s)
Capsaicina/farmacología , Fibras Nerviosas Amielínicas/efectos de los fármacos , Neuronas Aferentes/efectos de los fármacos , Fármacos del Sistema Sensorial/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Uretra/inervación , Vejiga Urinaria Hiperactiva/prevención & control , Vejiga Urinaria/inervación , Micción/efectos de los fármacos , Potenciales de Acción , Animales , Modelos Animales de Enfermedad , Electromiografía , Femenino , Bloqueadores Ganglionares/farmacología , Ratones Endogámicos C57BL , Fibras Nerviosas Amielínicas/metabolismo , Neuronas Aferentes/metabolismo , Técnicas de Placa-Clamp , Presión , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/fisiopatología , Factores de Tiempo , Vejiga Urinaria Hiperactiva/etiología , Vejiga Urinaria Hiperactiva/fisiopatología , Urodinámica/efectos de los fármacos
18.
Front Physiol ; 8: 49, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28220079

RESUMEN

Background: Mouse urodynamic tests are fundamental to understanding normal lower urinary tract (LUT) function. These experiments also contribute to our understanding of neurological dysfunction, pathophysiological processes, and potential mechanisms of therapy. Objectives: Systematic assessment of published evidence on urodynamics, advantages and limitations of different urodynamic measurements in mice, and consideration of potential implications for the clinical field. Methods: A search using specific search-terms for urodynamic studies and mice was conducted on PubMed (from inception to 1 July 2016). Results: We identified 55 studies examining or describing mouse neuro-urodynamics. We summarize reported features of mouse urodynamic function deriving from frequency-volume chart (FVC) measurements, voiding spot assays, filling cystometry, and pressure-flow studies. Similarly, an influence of the diurnal cycle on voiding is observed in mice and should be considered when interpreting rodent urodynamic studies, especially FVC measurements and voiding spot assays. Anaesthesia, restraint conditions, or filling rate influence mouse neuro-urodynamics. Mouse cystometric studies have observed intravesical pressure oscillations that accompany urine flow, attributed to high frequency opening and closing of the urethra. This characterization is not seen in other species, except rats. In contrast to human clinical urodynamics, the terminology of these examinations has not been standardized although many rodent urodynamic studies have been described. Conclusion: Mice have many anatomical and physiological similarities to humans and they are generally cost effective, and allow investigation of the effects of aging because of their short lifespan. There are some differences between mouse and human urodynamics. These must be considered when interpreting LUT function in mice, and translational value of murine disease models.

19.
Neurourol Urodyn ; 36(5): 1301-1305, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27778376

RESUMEN

AIMS: To examine the effects of a different number of daily bladder squeezes on bladder dysfunction in mice with spinal cord injury (SCI). METHODS: Spinal cord was transected at the Th8/9 in female C57BL/6N mice. Their bladders were manually squeezed to eliminate urine inside every day for 4 weeks. The mice were divided into three groups depending on the number of bladder squeezes; A: once daily, B: twice daily, C: three times daily. Four weeks after transection, single-filling cystometry were performed under an awake condition. NGF in the bladder mucosa and mRNA expression of P2X receptors and TRP channels in L6/S1 dorsal root ganglia (DRG) were measured. RESULTS: Bladder weight in group C was less than that of group A. Bladder capacity, post-void residual, and the number of non-voiding contractions during the storage phase were significantly larger in group A compared to group B or C. The level of NGF in groups C were lower compared to group A or B. The expression of P2X3 and TRPA1 in groups B and C was decreased compared to group A. The expression of P2X2 was decreased in groups B compared to group A. CONCLUSION: The post-injury bladder management after SCI with an increased number of daily bladder emptying improves the storage and voiding bladder dysfunction associated with the reduction of NGF in the bladder as well as P2X and TRP transcripts in lumbosacral DRG.


Asunto(s)
Ganglios Espinales/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Enfermedades de la Vejiga Urinaria/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Traumatismos de la Médula Espinal/complicaciones , Enfermedades de la Vejiga Urinaria/etiología , Micción/fisiología
20.
Am J Physiol Regul Integr Comp Physiol ; 310(8): R752-8, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26818058

RESUMEN

To clarify the lower urinary tract function in mice, we compared bladder and urethral activity between rats and mice with or without spinal cord injury (SCI). Female Sprague-Dawley rats and C57BL/6N mice were divided into five groups:1) spinal intact (SI) rats,2) SI mice,3) pudendal nerve transection (PNT) SI mice,4) spinal cord injury (SCI) rats, and 5) SCI mice. Continuous cystometry (CMG) and external urethral sphincter (EUS)-electromyogram (EMG) analyses were conducted under an awake, restrained condition. During voiding bladder contractions, SI animals exhibited EUS bursting with alternating active and silent periods, which, in rats but not mice, coincided with small-amplitude intravesical pressure oscillations in CMG recordings. In SI mice with bursting-like EUS activity, the duration of active periods was significantly shorter by 46% (32 ± 5 ms) compared with SI rats (59 ± 9 ms). In PNT-SI mice, there were no significant differences in any of cystometric parameters compared with SI mice. In SCI rats, fluid elimination from the urethra and the EUS bursting occurred during small-amplitude intravesical pressure oscillations. However, SCI mice did not exhibit clear EUS bursting activity or intravesical pressure oscillations but rather exhibited intermittent voiding with slow large-amplitude reductions in intravesical pressure, which occurred during periods of reduced EUS activity. These results indicate that EUS pumping activity is essential for generating efficient voiding in rats with or without spinal cord injury. However, EUS bursting activity is not required for efficient voiding in SI mice and does not reemerge in SCI mice in which inefficient voiding occurs during periods of reduced tonic EUS activity.


Asunto(s)
Nervio Pudendo/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Uretra/inervación , Vejiga Urinaria/inervación , Animales , Modelos Animales de Enfermedad , Electromiografía , Femenino , Manometría , Ratones Endogámicos C57BL , Contracción Muscular , Oscilometría , Presión , Ratas Sprague-Dawley , Especificidad de la Especie , Factores de Tiempo , Urodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA