Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Intervalo de año de publicación
1.
Anal Chem ; 95(6): 3153-3159, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36656793

RESUMEN

Dopamine (DA) homeostasis influences emotions, neural circuit development, cognition, and the reward system. Dysfunctions in DA regulation can lead to neurological disorders, including depression, developmental disorders, and addiction. DA homeostasis disruption is a primary cause of Parkinson's Disease (PD). Therefore, understanding the relationship between DA homeostasis and PD progression may clarify the mechanisms for pharmacologically treating PD. This study developed a novel in vitro DA homeostasis platform which consists of three main parts: (1) a microfluidic device for culturing DAergic neurons, (2) an optical detection system for reading DA levels, and (3) an automatic closed-loop control system that establishes when and how much medication to infuse; this uses a microfluidic device that can cultivate DAergic neurons, perfuse solutions, perform in vitro PD modeling, and continuously monitor DA concentrations. The automatically controlled closed-loop control system simultaneously monitors pharmacological PD treatment to support long-term monitoring of DA homeostasis. SH-SY5Y neuroblastoma cells were chosen as DAergic neurons. They were cultivated in the microfluidic device, and real-time cellular DA level measurements successfully achieved long-term monitoring and modulation of DA homeostasis. When applied in combination with multiday cell culture, this advanced system can be used for drug screening and fundamental biological studies.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Humanos , Dopamina , Microfluídica , Neuronas Dopaminérgicas , Homeostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA