Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Cancer Med ; 13(15): e70074, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39101505

RESUMEN

BACKGROUND: Breast cancer, a leading cause of female mortality, is closely linked to mutations in estrogen receptor beta (ESR2), particularly in the ligand-binding domain, which contributed to altered signaling pathways and uncontrolled cell growth. OBJECTIVES/AIMS: This study investigates the molecular and structural aspects of ESR2 mutant proteins to identify shared pharmacophoric regions of ESR2 mutant proteins and potential therapeutic targets aligned within the pharmacophore model. METHODS: This study was initiated by establishing a common pharmacophore model among three mutant ESR2 proteins (PDB ID: 2FSZ, 7XVZ, and 7XWR). The generated shared feature pharmacophore (SFP) includes four primary binding interactions: Hydrogen bond donors (HBD), hydrogen bond acceptors (HBA), hydrophobic interactions (HPho), and Aromatic interactions (Ar), along with halogen bond donors (XBD) and totalling 11 features (HBD: 2, HBA: 3, HPho: 3, Ar: 2, XBD: 1). By employing an in-house Python script, these 11 features distributed into 336 combinations, which were used as query to isolate a drug library of 41,248 compounds and subjected to virtual screening through the generated SFP. RESULTS: The virtual screening demonstrated 33 hits showing potential pharmacophoric fit scores and low RMSD value. The top four compounds: ZINC94272748, ZINC79046938, ZINC05925939, and ZINC59928516 showed a fit score of more than 86% and satisfied the Lipinski rule of five. These four compounds and a control underwent molecular (XP Glide mode) docking analysis against wild-type ESR2 protein (PDB ID: 1QKM), resulting in binding affinity of -8.26, -5.73, -10.80, and -8.42 kcal/mol, respectively, along with the control -7.2 kcal/mol. Furthermore, the stability of the selected candidates was determined through molecular dynamics (MD) simulations of 200 ns and MM-GBSA analysis. CONCLUSION: Based on MD simulations and MM-GBSA analysis, our study identified ZINC05925939 as a promising ESR2 inhibitor among the top four hits. However, it is essential to conduct further wet lab evaluation to assess its efficacy.


Asunto(s)
Neoplasias de la Mama , Receptor beta de Estrógeno , Receptor beta de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Receptor beta de Estrógeno/química , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Mutación , Simulación del Acoplamiento Molecular , Enlace de Hidrógeno , Modelos Moleculares , Unión Proteica , Antineoplásicos/farmacología , Antineoplásicos/química , Simulación de Dinámica Molecular , Ligandos , Farmacóforo
2.
Sci Rep ; 14(1): 1270, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218918

RESUMEN

In this study, we demonstrate the green synthesis of bimetallic silver-copper nanoparticles (Ag-Cu NPs) using Aerva lanata plant extract. These NPs possess diverse biological properties, including in vitro antioxidant, antibiofilm, and cytotoxic activities. The synthesis involves the reduction of silver nitrate and copper oxide salts mediated by the plant extract, resulting in the formation of crystalline Ag-Cu NPs with a face-centered cubic structure. Characterization techniques confirm the presence of functional groups from the plant extract, acting as stabilizing and reducing agents. The synthesized NPs exhibit uniform-sized spherical morphology ranging from 7 to 12 nm. They demonstrate significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, inhibiting extracellular polysaccharide secretion in a dose-dependent manner. The Ag-Cu NPs also exhibit potent cytotoxic activity against cancerous HeLa cell lines, with an inhibitory concentration (IC50) of 17.63 µg mL-1. Additionally, they demonstrate strong antioxidant potential, including reducing capability and H2O2 radical scavenging activity, particularly at high concentrations (240 µg mL-1). Overall, these results emphasize the potential of A. lanata plant metabolite-driven NPs as effective agents against infectious diseases and cancer.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Humanos , Antioxidantes/farmacología , Cobre/farmacología , Células HeLa , Nanopartículas del Metal/química , Peróxido de Hidrógeno , Pruebas de Sensibilidad Microbiana , Antibacterianos/química , Extractos Vegetales/química
4.
Crit Rev Food Sci Nutr ; 63(3): 303-329, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34254536

RESUMEN

Alginates are linear polymers comprising 40% of the dry weight of algae possess various applications in food and biomedical industries. Alginate oligosaccharides (AOS), a degradation product of alginate, is now gaining much attention for their beneficial role in food, pharmaceutical and agricultural industries. Hence this review was aimed to compile the information on alginate and AOS (prepared from seaweeds) during 1994-2020. As per our knowledge, this is the first review on the potential use of alginate oligosaccharides in different fields. The alginate derivatives are grouped according to their applications. They are involved in the isolation process and show antimicrobial, antioxidant, anti-inflammatory, antihypertension, anticancer, and immunostimulatory properties. AOS also have significant applications in prebiotics, nutritional supplements, plant growth development and others products.


Asunto(s)
Alginatos , Algas Marinas , Alginatos/metabolismo , Oligosacáridos/metabolismo , Antioxidantes , Suplementos Dietéticos
5.
Crit Rev Food Sci Nutr ; 63(5): 657-673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34278850

RESUMEN

Tartary buckwheat belongs to the family Polygonaceae, which is a traditionally edible and medicinal plant. Due to its various bioactive compounds, the consumption of Tartary buckwheat is correlated to a wide range of health benefits, and increasing attention has been paid to its potential as a functional food. This review summarizes the main bioactive compounds and important bioactivities and health benefits of Tartary buckwheat, emphasizing its protective effects on metabolic diseases and relevant molecular mechanisms. Tartary buckwheat contains a wide range of bioactive compounds, such as flavonoids, phenolic acids, triterpenoids, phenylpropanoid glycosides, bioactive polysaccharides, and bioactive proteins and peptides, as well as D-chiro-inositol and its derivatives. Consumption of Tartary buckwheat and Tartary buckwheat-enriched products is linked to multiple health benefits, e.g., antioxidant, anti-inflammatory, antihyperlipidemic, anticancer, antidiabetic, antiobesity, antihypertensive, and hepatoprotective activities. Especially, clinical studies indicate that Tartary buckwheat exhibits remarkable antidiabetic activities. Various tartary buckwheat -based foods presenting major health benefits as fat and blood glucose-lowering agents have been commercialized. Additionally, to address the safety concerns, i.e., allergic reactions, heavy metal and mycotoxin contaminations, the quality control standards for Tartary buckwheat and its products should be drafted and completed in the future.


Asunto(s)
Fagopyrum , Plantas Medicinales , Fagopyrum/química , Flavonoides/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Glicósidos
6.
Crit Rev Food Sci Nutr ; 63(6): 827-844, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34319824

RESUMEN

The understanding of gut microbiota has emerged as a significant frontier in development of strategies to maintain normal human body's homeostasis and preventing the disease development over the last decade. The composition of the gut microbiota influences the clinical benefit of immune checkpoints in patients with advanced cancer, but the mechanisms underlying this relationship are unclear. Cancer is among the leading causes of mortality worldwide. So far, there is no universal treatment for cancer and despite significant advances, a lot of improvement on cancer therapy is required. Owing to its role in preserving the host's health and maintaining cellular integrity, the human gut microbiome has recently drawn a lot of interest as a target for cancer treatment. Dietary fiber is fermented by the gut microbiota to generate short-chain fatty acids (SCFAs), such as acetate, butyrate, and propionate, which are physiologically active metabolites. SCFAs can modulate the pathophysiology of the tumor environment through various critical signaling pathways. In addition, SCFAs can bind to carcinogens and other toxic chemicals, thus facilitating their biotransformation and elimination through different excretory mechanisms. This review discusses the mechanisms of action of short-chain fatty acids in modulating hematopoiesis of various immune system cells and the resultant beneficial anti-cancer effects. It also provides future perspectives on cancer therapy.


Asunto(s)
Ácidos Grasos Volátiles , Neoplasias , Humanos , Ácidos Grasos Volátiles/metabolismo , Butiratos/metabolismo , Propionatos/metabolismo , Acetatos , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control
7.
Environ Mol Mutagen ; 64(2): 123-131, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36541415

RESUMEN

Recent technological advances in the medical field have increased the plausibility of exposing humans to high-intensity wavelength radiations like x-rays and gamma rays while diagnosing or treating specific medical maladies. These radiations induce nucleotide changes and chromosomal alterations in the exposed population, intentionally or accidentally. A radiological investigation is regularly used in identifying the disease, especially by the technicians working in intensive care units. The current study observes the genetic damages like chromosomal abnormalities (CA) in clinicians who are occupationally exposed to high-intensity radiations (x-rays) at their workplaces using universal cytogenetic tools like micronucleus assay (MN), sister chromatid exchange and comet assay. The study was conducted between 100 exposed practitioners from the abdominal scanning, chest scanning, cranial and orthopedic or bone scanning department and age-matched healthy controls. We observed a slightly higher rate of MN and CA (p < .05) in orthopedic and chest department practitioners than in other departments concerning increasing age and duration of exposure at work. Our results emphasize taking extra precautionary measures in clinical and hospital radiation laboratories to protect the practitioners.


Asunto(s)
Daño del ADN , Exposición Profesional , Humanos , Rayos X , Radiografía , Rayos gamma , Aberraciones Cromosómicas , Hospitales , Pruebas de Micronúcleos/métodos , Linfocitos
9.
Crit Rev Food Sci Nutr ; : 1-29, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36533409

RESUMEN

Diabetes mellitus is one of the major non-communicable diseases accounting for millions of death annually and increasing economic burden. Hyperglycemic condition in diabetes creates oxidative stress that plays a pivotal role in developing diabetes complications affecting multiple organs such as the heart, liver, kidney, retina, and brain. Green tea from the plant Camellia sinensis is a common beverage popular in many countries for its health benefits. Green tea extract (GTE) is rich in many biologically active compounds, e.g., epigallocatechin-3-O-gallate (EGCG), which acts as a potent antioxidant. Recently, several lines of evidence have shown the promising results of GTE and EGCG for diabetes management. Here, we have critically reviewed the effects of GTE and EGCC on diabetes in animal models and clinical studies. The concerns and challenges regarding the clinical use of GTE and EGCG against diabetes are also briefly discussed. Numerous beneficial effects of green tea and its catechins, particularly EGCG, make this natural product an attractive pharmacological agent that can be further developed to treat diabetes and its complications.

10.
Virusdisease ; 33(4): 371-382, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36447816

RESUMEN

Nasopharyngeal Carcinoma (NPC) is one of the leading cancers in India's north-eastern (NE) region affecting a section of the population each year. A proportion of the NPC cases are observed to recur even after therapy, indicating the involvement of other factors. We aimed to explore the NPC and Epstein-Barr virus (EBV) burden in the NE region and investigate the prognostic factors for the NPC patients' poor survival and recurrence. NPC patients' information was obtained from different state hospitals between 2014 and 2019. PCR and Sanger sequencing were performed to detect EBV types. Statistical analysis, including forest plot analysis, Kaplan-Mayer survival plot, Log-rank test, cox hazard regression, and Aalen's additive regression model, were performed to determine prognostic factors for the NPC patients' lower survival and recurrence. We observed an increased incidence of NPC and EBV infection in the past five years. Step-wise statistical analyses pointed out that variable such as non-professionals (B = 1.02, HR = 2.8, 95%CI = 1.5,4.9) workers (B = 0.92, HR = 2.5, 95%CI = 1.4,4.4), kitchen cum bedroom (B = 0.61, HR = 1.8, 95%CI = 1.2,2.8), mosquito repellent (B = 0.60, HR = 1.7, 95%CI = 1.1,2.7), nasal congestion (B = 0.60, HR = 1.8, 95%CI = 1.2,2.8), lower haemoglobin level (B = 0.92, HR = 2.5, 95%CI = 1.3,4.9), tumor stage IV (B = 2.8, HR = 1.8, 95%CI = 1.6,14.3), N2 (B = 1.4, HR = 4.0, 95%CI = 1.8,9.1), N3 (B = 1.9, HR = 6.4, 95%CI = 2.8,15.3), and M+ (B = 2.02, HR = 7.5, 95%CI = 4.1,13.7) revealed significant correlation with NPC patients' poor prognosis (p < 0.05). The presence of viral factors also showed a significant association with NPC patients' decreased survival. We concluded that factors related to day-to-day life with EBV infection could be the individual predictor for NPC incidence, lower survival, and disease recurrence. Supplementary Information: The online version contains supplementary material available at 10.1007/s13337-022-00789-5.

11.
Curr Res Food Sci ; 5: 1916-1943, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36300165

RESUMEN

Dark chocolate gets popularity for several decades due to its enormous health benefits. It contains several health-promoting factors (bioactive components - polyphenols, flavonoids, procyanidins, theobromines, etc, and vitamins and minerals) that positively modulate the immune system of human beings. It confers safeguards against cardiovascular diseases, certain types of cancers, and other brain-related disorders like Alzheimer's disease, Parkinson's disease, etc. Dark chocolate is considered a functional food due to its anti-diabetic, anti-inflammatory, and anti-microbial properties. It also has a well-established role in weight management and the alteration of a lipid profile to a healthy direction. But during the processing of dark chocolate, several nutrients are lost (polyphenol, flavonoids, flavan 3 ol, ascorbic acid, and thiamine). So, fortification would be an effective method of enhancing the overall nutrient content and also making the dark chocolate self-sufficient. Thus, the focus of this review study is to gather all the experimental studies done on dark chocolate fortification. Several ingredients were used for the fortification, such as fruits (mulberry, chokeberries, and elderberries), spices (cinnamon), phytosterols, peanut oil, probiotics (mainly Lactobacillus, bacillus spices), prebiotics (inulin, xanthan gum, and maltodextrin), flavonoids, flavan-3-ols, etc. Those fortifications were done to raise the total antioxidant content as well as essential fatty acid content simultaneously reducing total calorie content. Sometimes, the fortification was done to improve physical properties like viscosity, rheological propertiesand also improve overall consumer acceptance by modifying its bitter taste.

12.
Molecules ; 27(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36296552

RESUMEN

The tracing of an alternative drug, Phytochemicals is a promising approach to the viral threats that have emerged over the past two years. Across the world, herbal medicine is a better solution against anti-viral diseases during pandemic periods. Goniothalamus wightii is an herbal plant, which has diverse bioactive compounds with anticancer, antioxidant, and anti-viral properties. The aim of the study was to isolate the compound by chromatography studies and functionalization by FT-IR, LC-MS, and NMR (C-NMR, H-NMR). As a result, the current work focuses on whether (S)-Goniathalamin and its analogue could act as natural anti-viral molecules for multiple target proteins viz., MPro, RdRp, and SPro, which are required for SARS-CoV-2 infection. Overall, 954 compounds were examined and the molecular-docking studies were performed on the maestro platform of Schrodinger software. Molecular-dynamics simulation studies were performed on two complex major compounds to confirm their affinity across 150 simulations. This research suggests that plant-based drugs have high levels of antiviral properties against coronavirus. However, more research is needed to verify its antiviral properties.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Goniothalamus , Humanos , SARS-CoV-2 , Proteasas 3C de Coronavirus , Antioxidantes , Espectroscopía Infrarroja por Transformada de Fourier , Cisteína Endopeptidasas/química , Antivirales/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , ARN Polimerasa Dependiente del ARN
13.
Nutrients ; 14(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35807931

RESUMEN

Depression is a common and serious health issue affecting around 280 million people around the world. Suicidal ideation more frequently occurs in people with moderate to severe depression. Psychotherapy and pharmacological drugs are the mainstay of available treatment options for depressive disorders. However, pharmacological options do not offer complete cure, especially in moderate to severe depression, and are often seen with a range of adverse events. S-adenosyl methionine (SAMe) supplementation has been widely studied, and an impressive collection of literature published over the last few decades suggests its antidepressant efficacy. Probiotics have gained significant attention due to their wide array of clinical uses, and multiple studies have explored the link between probiotic species and mood disorders. Gut dysbiosis is one of the risk factors in depression by inducing systemic inflammation accompanied by an imbalance in neurotransmitter production. Thus, concomitant administration of probiotics may be an effective treatment strategy in patients with depressed mood, particularly in resistant cases, as these can aid in dysbiosis, possibly resulting in the attenuation of systemic inflammatory processes and the improvement of the therapeutic efficacy of SAMe. The current review highlights the therapeutic roles of SAMe and probiotics in depression, their mechanistic targets, and their possible synergistic effects and may help in the development of food supplements consisting of a combination of SAMe and probiotics with new dosage forms that may improve their bioavailability.


Asunto(s)
Disbiosis , Probióticos , Depresión/tratamiento farmacológico , Suplementos Dietéticos , Disbiosis/tratamiento farmacológico , Humanos , Probióticos/uso terapéutico , S-Adenosilmetionina/uso terapéutico
14.
Crit Rev Food Sci Nutr ; 62(26): 7282-7300, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33905274

RESUMEN

Many short-lived and highly reactive oxygen species, such as superoxide anion (O2-) and hydrogen peroxide (H2O2), are toxic or can create oxidative stress in cells, a response involved in the pathogenesis of numerous diseases depending on their concentration, location, and cellular conditions. Superoxide dismutase (SOD) activities as an endogenous and exogenous cell defense mechanism include the potential use in treating various diseases, improving the potential use in treating various diseases, and improving food-stuffs preparation dietary supplements human nutrition. Published work indicates that SOD regulates oxidative stress, lipid metabolism, inflammation, and oxidation in cells. It can prevent lipid peroxidation, the oxidation of low-density lipoprotein in macrophages, lipid droplets' formation, and the adhesion of inflammatory cells into endothelial monolayers. It also expresses antioxidant effects in numerous cancer-related processes. Additionally, different forms of SOD may also augment food processing and pharmaceutical applications, exhibit anticancer, antioxidant, and anti-inflammatory effects, and prevent arterial problems by protecting the proliferation of vascular smooth muscle cells. Many investigations in this review have reported the therapeutic ability and physiological importance of SOD. Because of their antioxidative effects, SODs are of great potential in the medicinal, cosmetic, food, farming and chemical industries. This review discusses the findings of human and animal studies that support the advantages of SOD enzyme regulations to reduce the formation of oxidative stress in various ways.


Asunto(s)
Peróxido de Hidrógeno , Superóxido Dismutasa , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Superóxidos/farmacología
15.
J Ayurveda Integr Med ; 13(2): 100523, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34823972

RESUMEN

BACKGROUND: In Ayurveda, "Dashamoolarishta" is one of the important composite herbal formulations. Mainly, the root and root bark of Oroxylum indicum are used as one of the ingredients in its preparation. This leads to over exploitation of medicinal plants owing, to excessive demand due to population expansion and its perceived importance in traditional herbal remedies. OBJECTIVE: For the conservation of biodiversity, the present investigation had an objective to prepare the extracts of different parts of O. indicum plant and to, compare the chemo-profiles as well as to study the biological activities of the prepared extracts. MATERIALS AND METHODS: Hydro-alcoholic (HA) and aqueous (Aq) extracts of various plant parts were prepared and chemical investigation was done with the help of (LC-MS/MS). Further, in vitro biological activities such as immuno-stimulation (IS) using a cytokine bioassay in RAW264.7 and in vitro anticancer in TNF-α ELISA in THP-1 cells were studied. RESULTS: The mass spectral profile of the plant revealed the presence of markers such as oroxylin A and chrysin in HA and Aq extracts of stem, leaf, bark and root. Cytokine release and TNF-α secretion was observed in both hydro-alcoholic and aqueous extracts. CONCLUSION: Based on the results from the present study, it can be concluded that it is possible to replace the roots and the bark of O. indicum with the stem of young plants and leaves. It paves a way for the conserving the medicinal plants without uprooting and extinguishing the whole plant.

16.
Crit Rev Food Sci Nutr ; 62(29): 7976-7988, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33983074

RESUMEN

Iturin, a metabolite produced by Bacillus subtilis, has a broad-spectrum antibacterial effect, and because they are secreted in the rhizosphere of plants, iturins are often mixed with many organic molecules. In recent years, people have improved their separation and purification methods but still cannot achieve simple and effective procedures, making Iturins an ideal biological control agent for insects and bacteria; commercial value still cannot be realized. With the in-depth studies of Iturins, its anti-cancer, hemolysis and other biological activities have gradually been discovered. This article reviews the branches of the Iturin family, structural features of these metabolite, separation and purification methods used for producing it, culture optimization, and various biological activities of the Iturin family, such as insecticidal, antibacterial, hemolytic and anticarcinogenic properties, among others have been summarized. Furthermore, this review revealed some commercial applications of Iturins and their relevance in research works. For example, in food packaging, clean water has good development potential.This can promote the commercial application of Iturins instead of other chemical and biological control agents that are environmentally friendly, pollution-free and have no side effects on humans. Furthermore, work documented anticancer, hemolytic and other biological activities of Iturin.


Asunto(s)
Agentes de Control Biológico , Péptidos Cíclicos , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos , Humanos , Lipopéptidos/farmacología , Péptidos Cíclicos/farmacología , Agua
17.
Crit Rev Food Sci Nutr ; 62(25): 7072-7116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33840324

RESUMEN

Marine organisms are considered a cache of biologically active metabolites with pharmaceutical, functional, and nutraceutical properties. Among these, marine bioactive peptides (MBAs) present in diverse marine species (fish, sponges, cyanobacteria, fungi, ascidians, seaweeds, & mollusks) have acquired attention owing to their broad-spectrum health-promoting benefits. Nowadays, scientists are keener exploring marine bioactive peptides precisely due to their unique structural and biological properties. These MBAs have reported ameliorating potential against different diseases like hypertension, diabetes, obesity, HIV, cancer, oxidation, and inflammation. Furthermore, MBAs isolated from various marine organisms may also have a beneficial role in the cosmetic, nutraceutical, and food industries. Few marine peptides and their derivative are approved for commercial use, while many MBAs are in various pre-clinical and clinical trials. This review mainly focuses on the diversity of marine bioactive peptides in marine organisms and their production procedures, such as chemical and enzymatic hydrolysis. Moreover, MBAs' therapeutic and biological potential has also been critically discussed herein, along with their status in drug discovery, pre-clinical and clinical trials.


Asunto(s)
Organismos Acuáticos , Péptidos , Animales , Organismos Acuáticos/química , Descubrimiento de Drogas , Hongos , Humanos , Moluscos , Péptidos/química
18.
Crit Rev Food Sci Nutr ; 62(10): 2580-2605, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33319597

RESUMEN

Breast cancer is known as the most devastating cancer in the global female community and is considered as one of the severe health care burdens in both developed and developing countries. In many cases, breast cancer has shown resistance to chemotherapy, radiotherapy and hormonal therapy. Keeping in view these limitations, there is an urgent need to develop safe, readily available and effective breast anticancer treatments. Therefore, the scientists are keen in the extraction of plant-based phytochemicals (organosulfur compounds, betalains, capsaicinoids, terpenes, terpenoids, polyphenols, and flavonoids) and using them as breast anticancer agents. Results of numerous epidemiological investigations have revealed the promising role of phytochemicals in the prevention and treatment of breast cancer. The diverse classes of plant bioactive metabolites regulate different metabolic and molecular processes, which can delay the proliferation of cancers. These phytochemicals possess chemo-preventive properties as they down-regulate the expression of estrogen receptor-α, inhibit the proliferation of cancer cells, and cause cell cycle arrest by inducing apoptotic conditions in tumor cells. This review article discusses the potent role of various plant-based phytochemicals as potential therapeutic agents in the treatment or prevention of breast cancer along with the proposed mechanisms of action.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Antineoplásicos/farmacología , Betalaínas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/prevención & control , Femenino , Flavonoides/farmacología , Flavonoides/uso terapéutico , Humanos , Fitoquímicos/química
19.
Crit Rev Food Sci Nutr ; 62(21): 5794-5823, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33724095

RESUMEN

With an increase in life expectancy and decrease of quality-of-life couple with the high prevalence of diseases, diet is expected to play a key function in sustaining human health. Nutritionists, food technologists and medical experts are working in synergy to cater for the increasing demand of food with associated therapeutic benefits, commonly known as functional food, that may improve well-being and reduce the risk of diseases. Interestingly, the marine ecosystem, due to its abundant and phenomenal biodiversity of marine organisms, constitutes a vital source of a panoply of healthy foods supply for the thriving functional food industry. Marine organisms such as seaweeds, sea cucumbers, sponges, and mollusks amongst others are sources of thousands of biologically active metabolites with antioxidant, anti-parasitic, antiviral, anti-inflammatory and anticancer properties. Given the growing number of research and interest to probe into the therapeutic roles of marine products, this review was designed to provide a comprehensive summary of the therapeutic properties of marine organisms (macroalgae, sea cucumbers and fish among others) which are consumed worldwide, in addition to their potentials and as sources of functional ingredients for developing novel food and fostering wellness. The gap between research development and actual commercialization, and future prospects of marine-based products also summarized to some extent.


Asunto(s)
Pepinos de Mar , Algas Marinas , Animales , Antioxidantes/metabolismo , Organismos Acuáticos , Ecosistema , Alimentos Funcionales , Humanos
20.
Oxid Med Cell Longev ; 2021: 6072631, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484566

RESUMEN

BACKGROUND: Solar ultraviolet radiation A (UVA, 320-400 nm) is a significant risk factor leading to various human skin conditions such as premature aging or photoaging. This condition is enhanced by UVA-mediated iron release from cellular iron proteins affecting huge populations across the globe. PURPOSE: Quercetin-loaded zinc oxide nanoparticles (quercetin@ZnO NPs) were prepared to examine its cellular iron sequestration ability to prevent the production of reactive oxygen species (ROS) and inflammatory responses in HaCaT cells. METHODS: Quercetin@ZnO NPs were synthesized through a homogenous precipitation method, and the functional groups were characterized by Fourier transform infrared (FTIR) spectroscopy, whereas scanning electron microscopy (SEM) described the morphologies of NPs. MTT and qRT-PCR assays were used to examine cell viability and the expression levels of various inflammatory cytokines. The cyclic voltammetry (CV) was employed to evaluate the redox potential of quercetin-Fe3+/quercetin-Fe2+ complexes. RESULTS: The material characterization results supported the loading of quercetin molecules on ZnO NPs. The CV and redox potential assays gave Fe-binding capability of quercetin at 0.15 mM and 0.3 mM of Fe(NO3)3. Cytotoxicity assays using quercetin@ZnO NPs with human HaCaT cells showed no cytotoxic effects and help regain cell viability loss following UVA (150 kJ/m2). CONCLUSION: Quercetin@ZnO NPs showed that efficient quercetin release action is UV-controlled, and the released quercetin molecules have excellent antioxidant, anti-inflammatory, and iron sequestration potential. Quercetin@ZnO NPs have superior biocompatibility to provide UVA protection and medication at once for antiphotoaging therapeutics.


Asunto(s)
Antioxidantes/metabolismo , Células HaCaT/metabolismo , Hierro/metabolismo , Nanopartículas/metabolismo , Quercetina/uso terapéutico , Rayos Ultravioleta/efectos adversos , Humanos , Quercetina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA