Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
2.
Cell Mol Immunol ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187636

RESUMEN

T helper 9 (Th9) cells are interleukin 9 (IL-9)-producing cells that have diverse functions ranging from antitumor immune responses to allergic inflammation. Th9 cells differentiate from naïve CD4+ T cells in the presence of IL-4 and transforming growth factor-beta (TGF-ß); however, our understanding of the molecular basis of their differentiation remains incomplete. Previously, we reported that the differentiation of another subset of TGF-ß-driven T helper cells, Th17 cells, is highly dependent on de novo lipid biosynthesis. On the basis of these findings, we hypothesized that lipid metabolism may also be important for Th9 cell differentiation. We therefore investigated the differentiation and function of mouse and human Th9 cells in vitro under conditions of pharmacologically or genetically induced deficiency of the intracellular fatty acid content and in vivo in mice genetically deficient in acetyl-CoA carboxylase 1 (ACC1), an important enzyme for fatty acid biosynthesis. Both the inhibition of de novo fatty acid biosynthesis and the deprivation of environmental lipids augmented differentiation and IL-9 production in mouse and human Th9 cells. Mechanistic studies revealed that the increase in Th9 cell differentiation was mediated by the retinoic acid receptor and the TGF-ß-SMAD signaling pathways. Upon adoptive transfer, ACC1-inhibited Th9 cells suppressed tumor growth in murine models of melanoma and adenocarcinoma. Together, our findings highlight a novel role of fatty acid metabolism in controlling the differentiation and in vivo functions of Th9 cells.

3.
Sci Immunol ; 8(86): eadd4346, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540735

RESUMEN

Metabolic fluxes involving fatty acid biosynthesis play essential roles in controlling the differentiation of T helper 17 (TH17) cells. However, the exact enzymes and lipid metabolites involved, as well as their link to promoting the core gene transcriptional signature required for the differentiation of TH17 cells, remain largely unknown. From a pooled CRISPR-based screen and unbiased lipidomics analyses, we identified that 1-oleoyl-lysophosphatidylethanolamine could act as a lipid modulator of retinoid-related orphan receptor gamma t (RORγt) activity in TH17 cells. In addition, we specified five enzymes, including Gpam, Gpat3, Lplat1, Pla2g12a, and Scd2, suggestive of the requirement of glycerophospholipids with monounsaturated fatty acids being required for the transcription of Il17a. 1-Oleoyl-lysophosphatidylethanolamine was reduced in Pla2g12a-deficient TH17 cells, leading to the abolition of interleukin-17 (IL-17) production and disruption to the core transcriptional program required for the differentiation of TH17 cells. Furthermore, mice with T cell-specific deficiency of Pla2g12a failed to develop disease in an experimental autoimmune encephalomyelitis model of multiple sclerosis. Thus, our data indicate that 1-oleoyl-lysophosphatidylethanolamine is a lipid metabolite that promotes RORγt-induced TH17 cell differentiation and the pathogenicity of TH17 cells.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Ratones , Animales , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Diferenciación Celular , Lípidos
4.
J Exp Med ; 218(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34813654

RESUMEN

T cells possess distinguishing effector functions and drive inflammatory disorders. We have previously identified IL-5-producing Th2 cells as the pathogenic population predominantly involved in the pathology of allergic inflammation. However, the cell-intrinsic signaling pathways that control the pathogenic Th2 cell function are still unclear. We herein report the high expression of acetyl-CoA carboxylase 1 (ACC1) in the pathogenic CD4+ T cell population in the lung and skin. The genetic deletion of CD4+ T cell-intrinsic ACC1 dampened eosinophilic and basophilic inflammation in the lung and skin by constraining IL-5 or IL-3 production. Mechanistically, ACC1-dependent fatty acid biosynthesis induces the pathogenic cytokine production of CD4+ T cells via metabolic reprogramming and the availability of acetyl-CoA for epigenetic regulation. We thus identified a distinct phenotype of the pathogenic T cell population in the lung and skin, and ACC1 was shown to be an essential regulator controlling the pathogenic function of these populations to promote type 2 inflammation.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Erupciones por Medicamentos/patología , Neumonía/patología , Células Th2/patología , Acetil-CoA Carboxilasa/genética , Administración Tópica , Animales , Basófilos/metabolismo , Basófilos/patología , Linfocitos T CD4-Positivos/patología , Calcitriol/análogos & derivados , Calcitriol/toxicidad , Erupciones por Medicamentos/tratamiento farmacológico , Erupciones por Medicamentos/genética , Erupciones por Medicamentos/metabolismo , Ácidos Grasos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Interleucina-3/metabolismo , Interleucina-5/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes , Neumonía/genética , Neumonía/metabolismo , Células Th2/metabolismo
5.
Immunity ; 49(1): 134-150.e6, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29958800

RESUMEN

Memory T cells provide long-lasting protective immunity, and distinct subpopulations of memory T cells drive chronic inflammatory diseases such as asthma. Asthma is a chronic allergic inflammatory disease with airway remodeling including fibrotic changes. The immunological mechanisms that induce airway fibrotic changes remain unknown. We found that interleukin-33 (IL-33) enhanced amphiregulin production by the IL-33 receptor, ST2hi memory T helper 2 (Th2) cells. Amphiregulin-epidermal growth factor receptor (EGFR)-mediated signaling directly reprogramed eosinophils to an inflammatory state with enhanced production of osteopontin, a key profibrotic immunomodulatory protein. IL-5-producing memory Th2 cells and amphiregulin-producing memory Th2 cells appeared to cooperate to establish lung fibrosis. The analysis of polyps from patients with eosinophilic chronic rhinosinusitis revealed fibrosis with accumulation of amphiregulin-producing CRTH2hiCD161hiCD45RO+CD4+ Th2 cells and osteopontin-producing eosinophils. Thus, the IL-33-amphiregulin-osteopontin axis directs fibrotic responses in eosinophilic airway inflammation and is a potential target for the treatment of fibrosis induced by chronic allergic disorders.


Asunto(s)
Anfirregulina/inmunología , Eosinófilos/inmunología , Osteopontina/metabolismo , Fibrosis Pulmonar/inmunología , Transducción de Señal/inmunología , Células Th2/inmunología , Anfirregulina/biosíntesis , Anfirregulina/metabolismo , Anfirregulina/farmacología , Animales , Modelos Animales de Enfermedad , Receptores ErbB/metabolismo , Femenino , Memoria Inmunológica/inmunología , Inmunomodulación , Interleucina-33/metabolismo , Ratones , Rinitis/inmunología , Rinitis/patología , Sinusitis/inmunología , Sinusitis/patología , Transcripción Genética/efectos de los fármacos
6.
Eur J Pharmacol ; 740: 112-20, 2014 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-25008073

RESUMEN

Hydrogen sulfide (H2S) is considered to be a signaling molecule. The precise mechanisms underlying H2S-related events, including the producing enzymes and target molecules in gastrointestinal tissues, have not been elucidated in detail. We herein examined the involvement of H2S in contractions induced by repeated electrical stimulations (ES). ES-induced contractions were neurotoxin-sensitive and increased by aminooxyacetic acid, an inhibitor of cystathionine ß-synthase (CBS) and cystathionine γ-lyase, but not by D,L-propargylglycine, a selective inhibitor of cystathionine γ-lyase, in an ES trial-dependent manner. ES-induced contractions were markedly decreased in the presence of L-cysteine. This response was inhibited by aminooxyacetic acid and an antioxidant, and accelerated by L-methionine, an activator of CBS. The existence of CBS was confirmed. NaHS transiently inhibited ES- and acetylcholine-induced contractions, and sustainably decreased basal tone for at least 20 min after its addition. The treatment with glibenclamide, an ATP-sensitive K+ channel blocker, reduced both the L-cysteine response and NaHS-induced inhibition of contractions. The NaHS-induced decrease in basal tone was inhibited by apamin, a small conductance Ca2+-activated K+ channel blocker. These results suggest that H2S may be endogenously produced via CBS in ES-activated enteric neurons, and regulates contractility via multiple K+ channels in the ileum.


Asunto(s)
Cistationina betasintasa/fisiología , Cisteína/fisiología , Sulfuro de Hidrógeno/metabolismo , Íleon/fisiología , Contracción Muscular/fisiología , Canales de Potasio/fisiología , Acetilcolina/farmacología , Ácido Aminooxiacético/farmacología , Animales , Apamina/farmacología , Cistationina betasintasa/antagonistas & inhibidores , Cistationina betasintasa/metabolismo , Estimulación Eléctrica , Técnicas In Vitro , Masculino , Metionina/farmacología , Ratones , Bloqueadores de los Canales de Potasio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA