Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Carcinog ; 63(6): 1188-1204, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38506376

RESUMEN

Recent preclinical studies have shown that the intake of nonsteroidal anti-inflammatory drugs (NSAIDs) aspirin and naproxen could be an effective intervention strategy against TMPRSS2-ERG fusion-driven prostate tumorigenesis. Herein, as a follow-up mechanistic study, employing TMPRSS2-ERG (fusion) positive tumors and plasma from TMPRSS2-ERG. Ptenflox/flox mice, we profiled the stage specific proteomic changes (focused on inflammatory circulating and prostate tissue/tumor-specific cytokines, chemokines, and growth factors/growth signaling-associated molecules) that contribute to prostate cancer (PCa) growth and progression in the TMPRSS2-ERG fusion-driven mouse model of tumorigenesis. In addition, the association of the protective effects of NSAIDs (aspirin 1400 ppm and naproxen 400 ppm) with the modulation of these specific molecular pathways was determined. A sandwich Elisa based membrane array-proteome profiler identifying 111 distinct signaling molecules was employed. Overall, the plasma and prostate tissue sample analyses identified 54 significant and differentially expressed cytokines, chemokines, and growth factors/growth signaling-associated molecules between PCa afflicted mice (TMPRSS2-ERG. Ptenflox/flox, age-matched noncancerous controls, NSAIDs-supplemented and no-drug controls). Bioinformatic analysis of the array outcomes indicated that the protective effect of NSAIDs was associated with reduced expression of (a) tumor promoting inflammatory molecules (M-CSF, IL-33, CCL22, CCL12, CX3CL1, CHI3L1, and CD93), (b) growth factors- growth signaling-associated molecules (Chemerin, FGF acidic, Flt-3 ligand, IGFBP-5, and PEDF), and (c) tumor microenvironment/stromal remodeling proteins MMP2 and MMP9. Overall, our findings corroborate the pathological findings that protective effects of NSAIDs in TMPSS2-ERG fusion-driven prostate tumorigenesis are associated with antiproliferative and anti-inflammatory effects and possible modulation of the immune cell enriched microenvironment.


Asunto(s)
Antiinflamatorios no Esteroideos , Aspirina , Carcinogénesis , Naproxeno , Fusión de Oncogenes , Próstata , Neoplasias de la Próstata , Serina Endopeptidasas , Regulador Transcripcional ERG , Animales , Masculino , Ratones , Antiinflamatorios no Esteroideos/farmacología , Aspirina/farmacología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Citocinas/sangre , Citocinas/metabolismo , Inflamación , Naproxeno/farmacología , Próstata/efectos de los fármacos , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteómica , Fosfohidrolasa PTEN/genética , Serina Endopeptidasas/genética , Regulador Transcripcional ERG/genética , Neoplasias Experimentales/sangre , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología
2.
Free Radic Biol Med ; 209(Pt 2): 265-281, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-38088264

RESUMEN

Phenylarsine oxide (PAO), an analog of lewisite, is a highly toxic trivalent arsenical and a potential chemical warfare agent. PAO-induced toxicity has been studied in lung, liver, and skin tissues. Nevertheless, very few studies have been published to comprehend the impact of PAO-induced toxicity on ocular tissues, even though eyes are uniquely vulnerable to injury by vesicants. Notably, arsenical vesicants such as lewisite have been shown to cause edema of eyelids, inflammation, massive corneal necrosis, and blindness. Accordingly, human corneal epithelial cells were used to study the effects of PAO exposure. PAO (100 and 200 nM) induced significant oxidative stress in corneal epithelial cells. Simultaneous treatment with N-acetyl-l-cysteine (NAC), an FDA-approved antioxidant, reversed the PAO-induced toxicity in human corneal epithelial cells. Furthermore, oxidative stress induction by PAO was accompanied by unfolded protein response (UPR) signaling activation and ferroptotic cell death. Further, to validate the findings of our in vitro studies, we optimized injury biomarkers and developed an ex vivo rabbit corneal culture model of PAO exposure. Investigations using PAO in ex vivo rabbit corneas revealed similar results. PAO (5 or 10 µg) for 3, 5, and 10 min caused moderate to extensive corneal epithelial layer degradation and reduced the epithelial layer thickness in a concentration- and time-dependent manner. Similar to human corneal cells, injuries by PAO in ex vivo cultured rabbit corneas were also associated with elevated oxidative stress, UPR signaling, and ferroptosis induction. NAC mitigated PAO-induced corneal injuries in rabbit ex vivo cornea culture as well. The reversal of PAO toxicity upon NAC treatment observed in our studies could be attributed to its antioxidant properties. These findings suggest that PAO exposure can cause significant corneal injury and highlight the need for further mechanistic studies to better understand the pathobiology of different arsenical vesicants, including PAO and lewisite.


Asunto(s)
Arsenicales , Lesiones de la Cornea , Animales , Humanos , Conejos , Acetilcisteína/farmacología , Antioxidantes/farmacología , Irritantes , Lesiones de la Cornea/inducido químicamente , Estrés Oxidativo , Respuesta de Proteína Desplegada , Muerte Celular
3.
Biol Methods Protoc ; 8(1): bpad039, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116323

RESUMEN

Shorea robusta (Dipterocarpaceae), commonly known as Sal, is an economically and culturally important timber species, known to contain a wide spectrum of polyphenols, polysaccharides, and other secondary metabolites in the tissues, which can interfere with the extraction of high-quality genomic DNA. In order to screen simple sequence repeat (SSR) markers and carry out other DNA-based analyses for this species in our laboratory, a high-throughput DNA extraction methodology was needed. Hence, we have optimized a simple, rapid, safe, and reliable high-throughput protocol for DNA extraction suitable for both fresh and dry leaves. The standardized protocol delivered good DNA yield of ∼1500 µg from 1 g of leaf tissue, with purity indicated by a 260 nm/280 nm absorbance ratio ranging from 1.70 to 1.91, which validated the suitability of extracted DNA and revealed reduced levels of contaminants. Additionally, the protocol that we developed was found to be suitable for polymerase chain reaction (PCR) amplification using microsatellite markers. Genome-wide characterization with SSR markers has been established in S. robusta, which further validates the protocol and its usefulness in DNA-based studies across the genus and/or family.

4.
Exp Eye Res ; 236: 109672, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797797

RESUMEN

Lewisite (LEW) is an arsenical vesicant that can be a potentially dangerous chemical warfare agent (CWA). Eyes are particularly susceptible to vesicant induced injuries and ocular LEW exposure can act swiftly, causing burning of eyes, edema, inflammation, cell death and even blindness. In our previous studies, we developed a LEW exposure-induced corneal injury model in rabbit and showed increased inflammation, neovascularization, cell death, and structural damage to rabbit corneas upon LEW exposure. In the present study, we further assessed the metabolomic changes to delineate the possible mechanisms underlying the LEW-induced corneal injuries. This information is vital and could help in the development of effective targeted therapies against ocular LEW injuries. Thus, the metabolomic changes associated with LEW exposures in rabbit corneas were assessed as a function of time, to delineate pathways from molecular perturbations at the genomic and proteomic levels. New Zealand white rabbit corneas (n = 3-6) were exposed to LEW vapor (0.2 mg/L; flow rate: 300 ml/min) for 2.5 min (short exposure; low dose) or 7.5 min (long-exposure; high dose) and then collected at 1, 3, 7, or 14 days post LEW exposure. Samples were prepared using the automated MicroLab STAR® system, and proteins precipitated to recover the chemically diverse metabolites. Metabolomic analysis was carried out by reverse phase UPLC-MS/MS and gas chromatography (GC)-MS. The data obtained were analyzed using Metabolon's software. The results showed that LEW exposures at high doses were more toxic, particularly at the day 7 post exposure time point. LEW exposure was shown to dysregulate metabolites associated with all the integral functions of the cornea and cause increased inflammation and immune response, as well as generate oxidative stress. Additionally, all important metabolic functions of the cells were also affected: lipid and nucleotide metabolism, and energetics. The high dose LEW exposures were more toxic, particularly at day 7 post LEW exposure (>10-fold increased levels of histamine, quinolinate, N-acetyl-ß-alanine, GMP, and UPM). LEW exposure dysregulated integral functions of the cornea, caused inflammation and heightened immune response, and generated oxidative stress. Lipid and nucleotide metabolism, and energetics were also affected. The novel information about altered metabolic profile of rabbit cornea following LEW exposure could assist in delineating complex molecular events; thus, aid in identifying therapeutic targets to effectively ameliorate ocular trauma.


Asunto(s)
Arsenicales , Lesiones de la Cornea , Animales , Conejos , Irritantes/efectos adversos , Irritantes/metabolismo , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Córnea/metabolismo , Lesiones de la Cornea/inducido químicamente , Lesiones de la Cornea/metabolismo , Arsenicales/efectos adversos , Arsenicales/metabolismo , Inflamación/metabolismo , Nucleótidos/efectos adversos , Nucleótidos/metabolismo , Lípidos
5.
Cancers (Basel) ; 15(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37894421

RESUMEN

The consumption of the non-steroidal anti-inflammatory drug (NSAID) aspirin is associated with a significant reduction in the risk of developing TMPRSS2-ERG (fusion)-positive prostate cancer (PCa) compared to fusion-negative PCa in population-based case-control studies; however, no extensive preclinical studies have been conducted to investigate and confirm these protective benefits. Thus, the focus of this study was to determine the potential usefulness of aspirin and another NSAID, naproxen, in PCa prevention, employing preclinical models of both TMPRSS2-ERG (fusion)-driven (with conditional deletion of Pten) and non-TMPRSS2-ERG-driven (Hi-Myc+/- mice) PCa. Male mice (n = 25 mice/group) were fed aspirin- (700 and 1400 ppm) and naproxen- (200 and 400 ppm) supplemented diets from (a) 6 weeks until 32 weeks of Hi-Myc+/- mice age; and (b) 1 week until 20 weeks post-Cre induction in the fusion model. In all NSAID-fed groups, compared to no-drug controls, there was a significant decrease in higher-grade adenocarcinoma incidence in the TMPRSS2-ERG (fusion)-driven PCa model. Notably, there were no moderately differentiated (MD) adenocarcinomas in the dorsolateral prostate of naproxen groups, and its incidence also decreased by ~79-91% in the aspirin cohorts. In contrast, NSAIDs showed little protective effect against prostate tumorigenesis in Hi-Myc+/- mice, suggesting that NSAIDs exert a specific protective effect against TMPRSS2-ERG (fusion)-driven PCa.

6.
Mol Carcinog ; 61(10): 941-957, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35856887

RESUMEN

Dietary rice bran (RB) has shown capacity to influence metabolism by modulation of gut microbiota in individuals at risk for colorectal cancer (CRC), which warranted attention for delineating mechanisms for bidirectional influences and cross-feeding between the host and RB-modified gut microbiota to reduce CRC. Accordingly, in the present study, fermented rice bran (FRB, fermented with a RB responsive microbe Bifidobacterium longum), and non-fermented RB were fed as 10% w/w (diet) to gut microbiota-intactspf or germ-free micegf to investigate comparative efficacy against inflammation-associated azoxymethane/dextran sodium sulfate (AOM/DSS)-induced CRC. Results indicated both microbiota-dependent and independent mechanisms for RB meditated protective efficacy against CRC that was associated with reduced neoplastic lesion size and local-mucosal/systemic inflammation, and restoration of colonic epithelial integrity. Enrichment of beneficial commensals (such as, Clostridiales, Blautia, Roseburia), phenolic metabolites (benzoate and catechol metabolism), and dietary components (ferulic acid-4 sulfate, trigonelline, and salicylate) were correlated with anti-CRC efficacy. Germ-free studies revealed gender-specific physiological variables could differentially impact CRC growth and progression. In the germ-free females, the RB dietary treatment showed a ∼72% reduction in the incidence of colonic epithelial erosion when compared to the ∼40% reduction in FRB-fed micegf . Ex vivo fermentation of RB did not parallel the localized-protective benefits of gut microbial metabolism by RB in damaged colonic tissues. Findings from this study suggest potential needs for safety considerations of fermented fiber rich foods as dietary strategies against severe inflammation-associated colon tumorigenesis (particularly with severe damage to the colonic epithelium).


Asunto(s)
Bifidobacterium longum , Microbioma Gastrointestinal , Oryza , Animales , Azoximetano/toxicidad , Carcinogénesis/patología , Transformación Celular Neoplásica/patología , Colon/patología , Sulfato de Dextran/toxicidad , Dieta , Modelos Animales de Enfermedad , Femenino , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Oryza/metabolismo
7.
J Tradit Complement Med ; 12(3): 287-301, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35493312

RESUMEN

Background and aim: Metabolic syndrome (MetS) is a complex disease of physiological imbalances interrelated to abnormal metabolic conditions, such as abdominal obesity, type II diabetes, dyslipidemia and hypertension. In the present pilot study, we investigated the nutraceutical bitter melon (Momordica charantia L) -intake induced transcriptome and metabolome changes and the converging metabolic signaling networks underpinning its inhibitory effects against MetS-associated risk factors. Experimental procedure: Metabolic effects of lyophilized bitter melon juice (BMJ) extract (oral gavage 200 mg/kg/body weight-daily for 40 days) intake were evaluated in diet-induced obese C57BL/6J male mice [fed-high fat diet (HFD), 60 kcal% fat]. Changes in a) serum levels of biochemical parameters, b) gene expression in the hepatic transcriptome (microarray analysis using Affymetrix Mouse Exon 1.0 ST arrays), and c) metabolite abundance levels in lipid-phase plasma [liquid chromatography mass spectrometry (LC-MS)-based metabolomics] after BMJ intervention were assessed. Results and conclusion: BMJ-mediated changes showed a positive trend towards enhanced glucose homeostasis, vitamin D metabolism and suppression of glycerophospholipid metabolism. In the liver, nuclear peroxisome proliferator-activated receptor (PPAR) and circadian rhythm signaling, as well as bile acid biosynthesis and glycogen metabolism targets were modulated by BMJ (p < 0.05). Thus, our in-depth transcriptomics and metabolomics analysis suggests that BMJ-intake lowers susceptibility to the onset of high-fat diet associated MetS risk factors partly through modulation of PPAR signaling and its downstream targets in circadian rhythm processes to prevent excessive lipogenesis, maintain glucose homeostasis and modify immune responses signaling.

8.
Mol Carcinog ; 61(7): 717-734, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35452553

RESUMEN

In the present study, we performed a comparative stage-specific pathological and molecular marker evaluation of TMPRSS2-ERG fusion and PTEN loss-driven (TMPRSS2-ERG. Ptenflox/flox ) versus non-fusion-driven prostate tumorigenesis (Hi-Myc) in mice. Anterior, ventral, and dorsolateral prostates were collected from mice at different ages (or time points post-Cre induction). Results indicated that growth and progression of prostatic intraepithelial lesions to adenocarcinoma stages occurred in both mice models albeit at different rates. In the TMPRSS2-ERG. Ptenflox/flox mice, the initiation of tumorigenesis was slow, but subsequent progression through different stages became increasingly faster. Adenocarcinoma stage was reached early on; however, no high-grade undifferentiated tumors were observed. Conversely, in the Hi-Myc+/- mice, tumorigenesis initiation was rapid; however, progression through different stages was relatively slower and it took a while to reach the more aggressive phenotype stage. Nevertheless, at the advanced stages in the Hi-Myc+/- mice, high-grade undifferentiated tumors were observed compared to the later stage tumors observed in the fusion-driven TMPRSS2-ERG. Ptenflox/flox mice. These results were corroborated by the stage specific-pattern in the molecular expression of proliferation markers (PCNA and c-Myc); androgen receptor (AR); fusion-resultant overexpression of ERG; Prostein (SLC45-A3); and angiogenesis marker (CD-31). Importantly, there was a significant increase in immune cell infiltrations, which increased with the stage of tumorigenesis, in the TMPRSS2-ERG fusion-positive tumors relative to fusion negative tumors. Together, these findings are both novel and highly significant in establishing a working preclinical model for evaluating the efficacy of interventions during different stages of tumorigenesis in TMPRSS2-ERG fusion-driven PCa.


Asunto(s)
Adenocarcinoma , Neoplasias de la Próstata , Adenocarcinoma/genética , Animales , Carcinogénesis/patología , Humanos , Masculino , Ratones , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología , Serina Endopeptidasas/metabolismo , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo
9.
Carcinogenesis ; 43(6): 557-570, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35184170

RESUMEN

The factors (environmental and genetic) contributing to basal cell carcinoma (BCC) pathogenesis are well-established; however, effective agents for BCC prevention are marred by toxic side-effects. Herein, we assessed the efficacy of flavonolignan silibinin against ultraviolet B (UVB)-induced BCC in Ptch+/- (heterozygous patched homolog 1 gene) mouse model. Both male and female Ptch+/- mice were irradiated with a 240 mJ/cm2 UVB dose 3 times/week for 26 or 46 weeks, with or without topical application of silibinin (9 mg/200 µl in acetone, applied 30 min before or after UVB exposure). Results indicated that silibinin application either pre- or post-UVB exposure for 26 weeks significantly decreased the number of BCC lesions by 65% and 39% (P < 0.001 for both) and the area covered by BCCs (72% and 45%, P < 0.001 for both), respectively, compared to UVB alone. Furthermore, continuous UVB exposure for 46 weeks increased the BCC lesion number and the BCC area covered by ~6 and ~3.4 folds (P < 0.001), respectively. Notably, even in this 46 week prolonged UVB exposure, silibinin (irrespective of pre- or post-UVB treatment) significantly halted the growth of BCCs by 81-94% (P < 0.001) as well as other epidermal lesions; specifically, silibinin treated tissues had less epidermal dysplasia, fibrosarcoma, and squamous cell carcinoma. Immunohistochemistry and immunofluorescence studies revealed that silibinin significantly decreased basal cell proliferation (Ki-67) and the expression of cytokeratins (14 and 15), and Hedgehog signaling mediators Smo and Gli1 in the BCC lesions. Together, our findings demonstrate strong potential of silibinin to be efficacious in preventing the growth and progression of UVB-induced BCC.


Asunto(s)
Carcinoma Basocelular , Neoplasias Cutáneas , Animales , Carcinoma Basocelular/tratamiento farmacológico , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/prevención & control , Femenino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Masculino , Ratones , Receptor Patched-1/genética , Silibina/farmacología , Silibina/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/prevención & control , Rayos Ultravioleta/efectos adversos
10.
Biomedicines ; 9(2)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546192

RESUMEN

Rice bran, removed from whole grain rice for white rice milling, has demonstrated efficacy for the control and suppression of colitis and colon cancer in multiple animal models. Dietary rice bran intake was shown to modify human stool metabolites as a result of modifications to metabolism by gut microbiota. In this study, human stool microbiota from colorectal cancer (CRC) survivors that consumed rice bran daily was examined by fecal microbiota transplantation (FMT) for protection from azoxymethane and dextran sodium sulfate (AOM/DSS) induced colon carcinogenesis in germ-free mice. Mice transfaunated with rice bran-modified microbiota communities (RMC) harbored fewer neoplastic lesions in the colon and displayed distinct enrichment of Flavonifractor and Oscillibacter associated with colon health, and the depletion of Parabacteroides distasonis correlated with increased tumor burden. Two anti-cancer metabolites, myristoylcarnitine and palmitoylcarnitine were increased in the colon of RMC transplanted mice. Trimethylamine-N-oxide (TMAO) and tartarate that are implicated in CRC development were reduced in murine colon tissue after FMT with rice bran-modified human microbiota. Findings from this study show that rice bran modified gut microbiota from humans confers protection from colon carcinogenesis in mice and suggests integrated dietary-FMT intervention strategies should be tested for colorectal cancer control, treatment, and prevention.

11.
J Cancer Prev ; 26(4): 266-276, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35047453

RESUMEN

Given the high rates of incidence and mortality associated with pancreatic cancer (PanC), there is a need to develop alternative strategies to target PanC. Recent studies have demonstrated that fruits of bitter melon (Momordica charantia) exhibit strong anticancer efficacy against PanC. However, the comparative effects of different bitter melon varieties have not been investigated. This has important implications, given that several bitter melon cultivars are geographically available but their differential effects are not known; and that on a global level, individuals could consume different bitter melon varieties sourced from different cultivars for anti-PanC benefits. Considering these shortcomings, in the present study, comparative pre-clinical anti-PanC studies have been conducted using lyophilized-juice and aqueous-methanolic extracts of the two most widely consumed but geographically diverse bitter melon varieties (Chinese [bitter melon juice; BMJ] and Indian [bitter melon extract; BME] variants). We observed that both BMJ and BME possess comparable efficacy against PanC growth and progression; specifically, these preparations have the potential to (a) inhibit PanC cell proliferation and induce cell death; (b) suppress PanC tumor growth, proliferation, and induce apoptosis; (c) restrict capillary tube formation by human umbilical vein endothelial cells, and decrease angiogenesis in PanC tumor xenografts. Thus, given the comparable pre-clinical anti-PanC efficacy of bitter melon cultivars, the geographical non-availability of a certain cultivar should not be a limiting factor in selecting a variant for moving forward for future clinical use/clinical trials either as a preventive or a therapeutic alternative for targeting PanC.

12.
Toxicol Lett ; 322: 1-11, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31884112

RESUMEN

Chloropicrin (CP), a warfare agent now majorly used as a soil pesticide, is a strong irritating and lacrimating compound with devastating toxic effects. To elucidate the mechanism of its ocular toxicity, toxic effects of CP (0-100 µM) were studied in primary human corneal epithelial (HCE) cells. CP exposure resulted in reduced HCE cell viability and increased apoptotic cell death with an up-regulation of cleaved caspase-3 and poly ADP ribose polymerase indicating their contribution in CP-induced apoptotic cell death. Following CP exposure, cells exhibited increased expression of heme oxygenase-1, and phosphorylation of H2A.X and p53 as well as 4-hydroxynonenal adduct formation, suggesting oxidative stress, DNA damage and lipid peroxidation. CP also caused increases in mitogen activated protein kinase-c-Jun N-terminal kinase and inflammatory mediator cyclooxygenase-2. Proteomic analysis revealed an increase in the carbonylation of 179 proteins and enrichment of pathways (including proteasome pathway and catabolic process) in HCE cells following CP exposure. CP-induced oxidative stress and lipid peroxidation can enhance protein carbonylation, prompting alterations in corneal epithelial proteins as well as perturbing signaling pathways resulting in toxic effects. Pathways and major processes identified following CP exposure could be lead-hit targets for further biochemical and molecular characterization as well as therapeutic intervention.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Epitelio Corneal/efectos de los fármacos , Hidrocarburos Clorados/toxicidad , Estrés Oxidativo/efectos de los fármacos , Plaguicidas/toxicidad , Carbonilación Proteica/efectos de los fármacos , Caspasa 3/metabolismo , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Daño del ADN , Células Epiteliales/metabolismo , Células Epiteliales/patología , Epitelio Corneal/metabolismo , Epitelio Corneal/patología , Hemo-Oxigenasa 1/metabolismo , Histonas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Peroxidación de Lípido , Fosforilación , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
13.
Carcinogenesis ; 40(9): 1164-1176, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31194859

RESUMEN

The established role of bitter melon juice (BMJ), a natural product, in activating master metabolic regulator adenosine monophosphate-activated protein kinase in pancreatic cancer (PanC) cells served as a basis for pursuing deeper investigation into the underlying metabolic alterations leading to BMJ efficacy in PanC. We investigated the comparative metabolic profiles of PanC cells with differential KRAS mutational status on BMJ exposure. Specifically, we employed nuclear magnetic resonance (NMR) metabolomics and in vivo imaging platforms to understand the relevance of altered metabolism in PanC management by BMJ. Multinuclear NMR metabolomics was performed, as a function of time, post-BMJ treatment followed by partial least square discriminant analysis assessments on the quantitative metabolic data sets to visualize the treatment group clustering; altered glucose uptake, lactate export and energy state were identified as the key components responsible for cell death induction. We next employed PANC1 xenograft model for assessing in vivo BMJ efficacy against PanC. Positron emission tomography ([18FDG]-PET) and magnetic resonance imaging on PANC1 tumor-bearing animals reiterated the in vitro results, with BMJ-associated significant changes in tumor volumes, tumor cellularity and glucose uptake. Additional studies in BMJ-treated PanC cells and xenografts displayed a strong decrease in the expression of glucose and lactate transporters GLUT1 and MCT4, respectively, supporting their role in metabolic changes by BMJ. Collectively, these results highlight BMJ-induced modification in PanC metabolomics phenotype and establish primarily lactate efflux and glucose metabolism, specifically GLUT1 and MCT4 transporters, as the potential metabolic targets underlying BMJ efficacy in PanC.

14.
Exp Mol Pathol ; 110: 104275, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31233733

RESUMEN

Sulfur mustard (SM), a potent vesicating chemical warfare agent, and its analog nitrogen mustard (NM), are both strong bi-functional alkylating agents. Eyes, skin, and the respiratory system are the main targets of SM and NM exposure; however, ocular tissue is most sensitive, resulting in severe ocular injury. The mechanism of ocular injury from vesicating agents' exposure is not completely understood. To understand the injury mechanism from exposure to vesicating agents, NM has been previously employed in our toxicity studies on primary human corneal epithelial cells and ex vivo rabbit cornea organ culture model. In the current study, corneal toxicity from NM ocular exposure (1%) was analyzed for up to 28 days post-exposure in New Zealand White male rabbits to develop an acute corneal injury model. NM exposure led to conjunctival and eyelid swelling within a few hours after exposure, in addition to significant corneal opacity and ulceration. An increase in total corneal thickness and epithelial degradation was observed starting at day 3 post-NM exposure, which was maximal at day 14 post-exposure and did not resolve until 28 days post-exposure. There was an NM-induced increase in the number of blood vessels and inflammatory cells, and a decrease in keratocytes in the corneal stroma. NM exposure resulted in increased expression levels of cyclooxygenase-2, Interleukin-8, vascular endothelial growth factor and Matrix Metalloproteinase 9 indicating their involvement in NM-induced corneal injury. These clinical, biological, and molecular markers could be useful for the evaluation of acute corneal injury and to screen for therapies against NM- and SM-induced ocular injury.


Asunto(s)
Córnea/efectos de los fármacos , Lesiones de la Cornea/metabolismo , Mecloretamina/toxicidad , Gas Mostaza/toxicidad , Enfermedad Aguda , Animales , Sustancias para la Guerra Química/toxicidad , Córnea/metabolismo , Córnea/patología , Lesiones de la Cornea/inducido químicamente , Ciclooxigenasa 2/biosíntesis , Humanos , Inmunohistoquímica , Interleucina-8/biosíntesis , Masculino , Metaloproteinasa 9 de la Matriz/biosíntesis , Conejos , Factor A de Crecimiento Endotelial Vascular/biosíntesis
15.
Sci Rep ; 8(1): 9540, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29934570

RESUMEN

Prostate cancer (PCa) is the most common malignancy and second leading cause of cancer-related deaths in American men. Proliferating cells have higher need for nutrients and oxygen, triggering angiogenesis that plays a critical role in tumor growth, progression and metastasis. Consequently, immense focus has converged onto inhibitors of angiogenesis in cancer treatment, such as Nintedanib, which has shown exceptional antitumor activity via inhibiting cell proliferation and the resulting tumor growth, primarily due to its combined action on tumor cells, endothelial cells and pericytes. Accordingly, here we assessed both in vitro and in vivo efficacy of Nintedanib in PCa. The results showed that Nintedanib decreased cell viability in both androgen dependent- and -independent PCa cells, together with a decrease in cell motility and invasiveness. Nintedanib also reduced the expression of significant genes responsible for cell cycle progression. PCa PC3 xenograft-carrying nude mice treated with Nintedanib showed significantly decreased tumor volume and cell proliferation alongside diminished levels of pro-angiogenic molecules and blood vessel densities. In conclusion, we report that Nintedanib has strong efficacy against PCa in pre-clinical models via modulation of various pathways, and that it could be employed as a promising new strategy to manage PCa clinically.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Indoles/farmacología , Neovascularización Patológica/tratamiento farmacológico , Neoplasias de la Próstata/patología , Andrógenos/metabolismo , Animales , Cadherinas/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Indoles/uso terapéutico , Masculino , Ratones , Invasividad Neoplásica , Células PC-3 , Neoplasias de la Próstata/irrigación sanguínea , Neoplasias de la Próstata/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Toxicol Lett ; 293: 127-132, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29174984

RESUMEN

Vesicating agent, Sulfur mustard (SM), causes devastating eye injury; however, there are no effective antidotes available. Using nitrogen mustard (NM), a bi-functional analog of SM, we have earlier reported that NM-induced corneal injury in ex vivo rabbit cornea organ culture model parallels corneal injury reported with SM. Using this model, we have demonstrated the therapeutic efficacy of dexamethasone (DEX), doxycycline (DOX) and silibinin (SB) in reversing NM (2h exposure)-induced corneal injuries when added immediately after washing NM. In the present study, we further examined the efficacy of similar/higher doses of these agents when added immediately, 2, or 4h after washing NM following its 2h exposure. All three treatment agents caused a reversal in established NM-induced injury biomarkers when added immediately or 2h after washing NM following its 2h exposure; however, when treatments were carried out 4h after washing NM, there was no significant effect. Together, our results further show the beneficial effect of these agents in reversing NM-induced corneal injury and indicate the time window for effective treatment. This could be useful towards future development of targeted therapeutics against vesicant-induced ocular injury.


Asunto(s)
Antibacterianos/farmacología , Antiinflamatorios/farmacología , Sustancias para la Guerra Química/toxicidad , Córnea/efectos de los fármacos , Mecloretamina/antagonistas & inhibidores , Mecloretamina/toxicidad , Sustancias Protectoras/farmacología , Animales , Apoptosis/efectos de los fármacos , Ciclooxigenasa 2/biosíntesis , Dexametasona/uso terapéutico , Doxiciclina/farmacología , Metaloproteinasa 9 de la Matriz/biosíntesis , Técnicas de Cultivo de Órganos , Conejos , Silibina , Silimarina/farmacología , Factor A de Crecimiento Endotelial Vascular/biosíntesis
17.
Toxicol Sci ; 160(2): 420-428, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973427

RESUMEN

Lewisite (LEW), a potent arsenical vesicating chemical warfare agent, poses a continuous risk of accidental exposure in addition to its feared use as a terrorist weapon. Ocular tissue is exquisitely sensitive to LEW and exposure can cause devastating corneal lesions. However, detailed pathogenesis of corneal injury and related mechanisms from LEW exposure that could help identify targeted therapies are not available. Using an established consistent and efficient exposure system, we evaluated the pathophysiology of the corneal injury in New Zealand white rabbits following LEW vapor exposure (at 0.2 mg/L dose) for 2.5 and 7.5 min, for up to 28 day post-exposure. LEW led to an increase in total corneal thickness starting at day 1 post-exposure and epithelial degradation starting at day 3 post-exposure, with maximal effect at day 7 postexposure followed by recovery at later time points. LEW also led to an increase in the number of blood vessels and inflammatory cells but a decrease in keratocytes with optimal effects at day 7 postexposure. A significant increase in epithelial-stromal separation was observed at days 7 and 14 post 7.5 min LEW exposure. LEW also caused an increase in the expression levels of cyclooxygenase-2, IL-8, vascular endothelial growth factor, and matrix metalloproteinase-9 at all the study time points indicating their involvement in LEW-induced inflammation, vesication, and neovascularization. The outcomes here provide valuable LEW-induced corneal injury endpoints at both lower and higher exposure durations in a relevant model system, which will be helpful to identify and screen therapies against LEW-induced corneal injury.


Asunto(s)
Arsenicales/efectos adversos , Sustancias para la Guerra Química/efectos adversos , Córnea/efectos de los fármacos , Animales , Vesícula/inducido químicamente , Vesícula/metabolismo , Vesícula/patología , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Córnea/irrigación sanguínea , Córnea/metabolismo , Córnea/patología , Queratocitos de la Córnea/efectos de los fármacos , Queratocitos de la Córnea/metabolismo , Queratocitos de la Córnea/patología , Neovascularización de la Córnea/inducido químicamente , Neovascularización de la Córnea/metabolismo , Neovascularización de la Córnea/patología , Paquimetría Corneal , Sustancia Propia/efectos de los fármacos , Sustancia Propia/metabolismo , Sustancia Propia/patología , Ciclooxigenasa 2/metabolismo , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/metabolismo , Epitelio Corneal/patología , Interleucina-8/metabolismo , Queratitis/inducido químicamente , Queratitis/metabolismo , Queratitis/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Conejos , Medición de Riesgo , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Eur J Med Chem ; 113: 34-49, 2016 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-26922227

RESUMEN

The present study was carried out in an attempt to synthesize a new class of antimicrobial and antiplasmodial agents by copper catalyzed click chemistry to afford 25 compounds 10-14(a-e) of 1,4-disubstituted-1,2,3-triazole derivatives of chalcones and flavones. The structures of the newly synthesized compounds were established by elemental analysis, IR, (1)H NMR, (13)C NMR and Mass spectral data. The newly synthesized compounds were evaluated for their antibacterial activity against Gram positive bacteria (Staphylococcus aureus, Enterococcus faecalis), Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Shigella boydii, Klebsiella pneumoniae) and antifungal activity against (Candida albicans, Candida tropicalis, Candida parapsilosis, Cryptococcus neoformans, Dermatophyte) as well as molds (Aspergillus niger, Aspergillus fumigatus). The antiplasmodial and cytotoxic activities of these compounds were also evaluated against human malaria parasite Plasmodium falciparum strain 3D7 and human hepato-cellular carcinoma cells (Huh-7), respectively. Compounds 10a, 10c, 10d, 12c and 14e showed promising antibacterial activity while compounds 10e, 11d, 11e, 12c, 13a, 13b, 13e, 14a and 14d showed good antifungal activity as compared to the corresponding standard drugs. Compound 10b was found to be the most active against Plasmodium falciparum while the remaining compounds showed moderate to weak antiplasmodial activity. However, cytotoxic activities of all compounds were found ineffective against Huh-7 cells.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antimaláricos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Triazoles/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Antimaláricos/síntesis química , Antimaláricos/química , Línea Celular Tumoral , Chalcona/química , Chalcona/farmacología , Relación Dosis-Respuesta a Droga , Flavonas/química , Flavonas/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química
19.
Cornea ; 35(2): 257-66, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26555588

RESUMEN

PURPOSE: To evaluate the toxic effects and associated mechanisms in corneal tissue exposed to the vesicating agent, nitrogen mustard (NM), a bifunctional alkylating analog of the chemical warfare agent sulfur mustard. METHODS: Toxic effects and associated mechanisms were examined in maximally affected corneal tissue using corneal cultures and human corneal epithelial (HCE) cells exposed to NM. RESULTS: Analysis of ex vivo rabbit corneas showed that NM exposure increased apoptotic cell death, epithelial thickness, epithelial-stromal separation, and levels of vascular endothelial growth factor, cyclooxygenase 2, and matrix metalloproteinase-9. In HCE cells, NM exposure resulted in a dose-dependent decrease in cell viability and proliferation, which was associated with DNA damage in terms of an increase in p53 ser15, total p53, and H2A.X ser139 levels. NM exposure also induced caspase-3 and poly ADP ribose polymerase cleavage, suggesting their involvement in NM-induced apoptotic death in the rabbit cornea and HCE cells. Similar to rabbit cornea, NM exposure caused an increase in cyclooxygenase 2, matrix metalloproteinase-9, and vascular endothelial growth factor levels in HCE cells, indicating a role of these molecules and related pathways in NM-induced corneal inflammation, epithelial-stromal separation, and neovascularization. NM exposure also induced activation of activator protein 1 transcription factor proteins and upstream signaling pathways including mitogen-activated protein kinases and Akt protein kinase, suggesting that these could be key factors involved in NM-induced corneal injury. CONCLUSIONS: Results from this study provide insight into the molecular targets and pathways that could be involved in NM-induced corneal injuries laying the background for further investigation of these pathways in vesicant-induced ocular injuries, which could be helpful in the development of targeted therapies.


Asunto(s)
Sustancias para la Guerra Química/toxicidad , Córnea/efectos de los fármacos , Neovascularización de la Córnea/inducido químicamente , Sustancia Propia/patología , Daño del ADN , Epitelio Corneal/patología , Mecloretamina/toxicidad , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Western Blotting , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Córnea/metabolismo , Córnea/patología , Neovascularización de la Córnea/metabolismo , Neovascularización de la Córnea/patología , Ciclooxigenasa 2/metabolismo , Relación Dosis-Respuesta a Droga , Inmunohistoquímica , Metaloproteinasa 9 de la Matriz/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Técnicas de Cultivo de Órganos , Conejos , Rotura , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Toxicol Lett ; 235(3): 161-71, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25891025

RESUMEN

Our recent studies in SKH-1 hairless mice have demonstrated that topical exposure to nitrogen mustard (NM), an analog of sulfur mustard (SM), triggers the inflammatory response, microvesication and apoptotic cell death. Here, we sought to identify the mechanism/s involved in these NM-induced injury responses. Results obtained show that NM exposure of SKH-1 hairless mouse skin caused H2A.X and p53 phosphorylation and increased p53 accumulation, indicating DNA damage. In addition, NM also induced the activation of MAPKs/ERK1/2, JNK1/2 and p38 as well as that of Akt together with the activation of transcription factor AP1. Also, NM exposure induced robust expression of pro-inflammatory mediators namely cyclooxygenase 2 and inducible nitric oxide synthase and cytokine tumor necrosis factor alpha, and increased the levels of proteolytic mediator matrix metalloproteinase 9. NM exposure of skin also increased lipid peroxidation, 5,5-dimethyl-2-(8-octanoic acid)-1-pyrroline N-oxide protein adduct formation, protein and DNA oxidation indicating an elevated oxidative stress. We also found NM-induced increase in the homologous recombinant repair pathway, suggesting its involvement in the repair of NM-induced DNA damage. Collectively, these results indicate that NM induces oxidative stress, mainly a bi-phasic response in DNA damage and activation of MAPK and Akt pathways, which activate transcription factor AP1 and induce the expression of inflammatory and proteolytic mediators, contributing to the skin injury response by NM. In conclusion, this study for the first time links NM-induced mechanistic changes with our earlier reported murine skin injury lesions with NM, which could be valuable to identify potential therapeutic targets and rescue agents.


Asunto(s)
Daño del ADN/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Mecloretamina/toxicidad , Estrés Oxidativo , Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Sustancias para la Guerra Química/toxicidad , Regulación Enzimológica de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Peroxidación de Lípido , Masculino , Ratones , Ratones Pelados , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Oxidación-Reducción , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Péptidos/genética , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Piel/efectos de los fármacos , Piel/metabolismo , Absorción Cutánea , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA