Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 626(7997): 194-206, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096902

RESUMEN

The LINE-1 (L1) retrotransposon is an ancient genetic parasite that has written around one-third of the human genome through a 'copy and paste' mechanism catalysed by its multifunctional enzyme, open reading frame 2 protein (ORF2p)1. ORF2p reverse transcriptase (RT) and endonuclease activities have been implicated in the pathophysiology of cancer2,3, autoimmunity4,5 and ageing6,7, making ORF2p a potential therapeutic target. However, a lack of structural and mechanistic knowledge has hampered efforts to rationally exploit it. We report structures of the human ORF2p 'core' (residues 238-1061, including the RT domain) by X-ray crystallography and cryo-electron microscopy in several conformational states. Our analyses identified two previously undescribed folded domains, extensive contacts to RNA templates and associated adaptations that contribute to unique aspects of the L1 replication cycle. Computed integrative structural models of full-length ORF2p show a dynamic closed-ring conformation that appears to open during retrotransposition. We characterize ORF2p RT inhibition and reveal its underlying structural basis. Imaging and biochemistry show that non-canonical cytosolic ORF2p RT activity can produce RNA:DNA hybrids, activating innate immune signalling through cGAS/STING and resulting in interferon production6-8. In contrast to retroviral RTs, L1 RT is efficiently primed by short RNAs and hairpins, which probably explains cytosolic priming. Other biochemical activities including processivity, DNA-directed polymerization, non-templated base addition and template switching together allow us to propose a revised L1 insertion model. Finally, our evolutionary analysis demonstrates structural conservation between ORF2p and other RNA- and DNA-dependent polymerases. We therefore provide key mechanistic insights into L1 polymerization and insertion, shed light on the evolutionary history of L1 and enable rational drug development targeting L1.


Asunto(s)
Endonucleasas , Elementos de Nucleótido Esparcido Largo , ADN Polimerasa Dirigida por ARN , Transcripción Reversa , Humanos , Microscopía por Crioelectrón , Endonucleasas/química , Endonucleasas/genética , Endonucleasas/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , ARN/genética , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Cristalografía por Rayos X , ADN/biosíntesis , ADN/genética , Inmunidad Innata , Interferones/biosíntesis
2.
Cell Metab ; 29(1): 174-182.e5, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30244972

RESUMEN

The incidence of hepatocellular carcinoma (HCC) is rapidly increasing due to the prevalence of obesity and non-alcoholic fatty liver disease, but the molecular triggers that initiate disease development are not fully understood. We demonstrate that mice with targeted loss-of-function point mutations within the AMP-activated protein kinase (AMPK) phosphorylation sites on acetyl-CoA carboxylase 1 (ACC1 Ser79Ala) and ACC2 (ACC2 Ser212Ala) have increased liver de novo lipogenesis (DNL) and liver lesions. The same mutation in ACC1 also increases DNL and proliferation in human liver cancer cells. Consistent with these findings, a novel, liver-specific ACC inhibitor (ND-654) that mimics the effects of ACC phosphorylation inhibits hepatic DNL and the development of HCC, improving survival of tumor-bearing rats when used alone and in combination with the multi-kinase inhibitor sorafenib. These studies highlight the importance of DNL and dysregulation of AMPK-mediated ACC phosphorylation in accelerating HCC and the potential of ACC inhibitors for treatment.


Asunto(s)
Acetil-CoA Carboxilasa , Carcinoma Hepatocelular/metabolismo , Lipogénesis , Neoplasias Hepáticas/metabolismo , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Acetil-CoA Carboxilasa/fisiología , Animales , Células Hep G2 , Humanos , Masculino , Ratones , Fosforilación , Ratas , Ratas Wistar
3.
Br J Haematol ; 177(2): 271-282, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28295194

RESUMEN

Activation of tyrosine kinase 2 (TYK2) contributes to the aberrant survival of T-cell acute lymphoblastic leukaemia (T-ALL) cells. Here we demonstrate the anti-leukaemic activity of a novel TYK2 inhibitor, NDI-031301. NDI-031301 is a potent and selective inhibitor of TYK2 that induced robust growth inhibition of human T-ALL cell lines. NDI-031301 treatment of human T-ALL cell lines resulted in induction of apoptosis that was not observed with the JAK inhibitors tofacitinib and baricitinib. Further investigation revealed that NDI-031301 treatment uniquely leads to activation of three mitogen-activated protein kinases (MAPKs), resulting in phosphorylation of ERK, SAPK/JNK and p38 MAPK coincident with PARP cleavage. Activation of p38 MAPK occurred within 1 h of NDI-031301 treatment and was responsible for NDI-031301-induced T-ALL cell death, as pharmacological inhibition of p38 MAPK partially rescued apoptosis induced by TYK2 inhibitor. Finally, daily oral administration of NDI-031301 at 100 mg/kg bid to immunodeficient mice engrafted with KOPT-K1 T-ALL cells was well tolerated, and led to decreased tumour burden and a significant survival benefit. These results support selective inhibition of TYK2 as a promising potential therapeutic strategy for T-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , TYK2 Quinasa/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nat Med ; 22(10): 1108-1119, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27643638

RESUMEN

Continuous de novo fatty acid synthesis is a common feature of cancer that is required to meet the biosynthetic demands of a growing tumor. This process is controlled by the rate-limiting enzyme acetyl-CoA carboxylase (ACC), an attractive but traditionally intractable drug target. Here we provide genetic and pharmacological evidence that in preclinical models ACC is required to maintain the de novo fatty acid synthesis needed for growth and viability of non-small-cell lung cancer (NSCLC) cells. We describe the ability of ND-646-an allosteric inhibitor of the ACC enzymes ACC1 and ACC2 that prevents ACC subunit dimerization-to suppress fatty acid synthesis in vitro and in vivo. Chronic ND-646 treatment of xenograft and genetically engineered mouse models of NSCLC inhibited tumor growth. When administered as a single agent or in combination with the standard-of-care drug carboplatin, ND-646 markedly suppressed lung tumor growth in the Kras;Trp53-/- (also known as KRAS p53) and Kras;Stk11-/- (also known as KRAS Lkb1) mouse models of NSCLC. These findings demonstrate that ACC mediates a metabolic liability of NSCLC and that ACC inhibition by ND-646 is detrimental to NSCLC growth, supporting further examination of the use of ACC inhibitors in oncology.


Asunto(s)
Acetil-CoA Carboxilasa/antagonistas & inhibidores , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Ácidos Grasos/biosíntesis , Metabolismo de los Lípidos/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Pirimidinonas/farmacología , Tiofenos/farmacología , Proteínas Quinasas Activadas por AMP , Acetiltransferasas/antagonistas & inhibidores , Regulación Alostérica , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Proliferación Celular/genética , Humanos , Metabolismo de los Lípidos/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Ratones , Ratones Noqueados , Terapia Molecular Dirigida , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Proc Natl Acad Sci U S A ; 113(13): E1796-805, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26976583

RESUMEN

Simultaneous inhibition of the acetyl-CoA carboxylase (ACC) isozymes ACC1 and ACC2 results in concomitant inhibition of fatty acid synthesis and stimulation of fatty acid oxidation and may favorably affect the morbidity and mortality associated with obesity, diabetes, and fatty liver disease. Using structure-based drug design, we have identified a series of potent allosteric protein-protein interaction inhibitors, exemplified by ND-630, that interact within the ACC phosphopeptide acceptor and dimerization site to prevent dimerization and inhibit the enzymatic activity of both ACC isozymes, reduce fatty acid synthesis and stimulate fatty acid oxidation in cultured cells and in animals, and exhibit favorable drug-like properties. When administered chronically to rats with diet-induced obesity, ND-630 reduces hepatic steatosis, improves insulin sensitivity, reduces weight gain without affecting food intake, and favorably affects dyslipidemia. When administered chronically to Zucker diabetic fatty rats, ND-630 reduces hepatic steatosis, improves glucose-stimulated insulin secretion, and reduces hemoglobin A1c (0.9% reduction). Together, these data suggest that ACC inhibition by representatives of this series may be useful in treating a variety of metabolic disorders, including metabolic syndrome, type 2 diabetes mellitus, and fatty liver disease.


Asunto(s)
Acetil-CoA Carboxilasa/antagonistas & inhibidores , Dislipidemias/tratamiento farmacológico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hígado Graso/tratamiento farmacológico , Pirimidinonas/farmacología , Tiofenos/farmacología , Acetil-CoA Carboxilasa/metabolismo , Animales , Inhibidores Enzimáticos/farmacocinética , Femenino , Células Hep G2/efectos de los fármacos , Células Hep G2/metabolismo , Humanos , Resistencia a la Insulina , Masculino , Simulación del Acoplamiento Molecular , Obesidad/tratamiento farmacológico , Obesidad/etiología , Multimerización de Proteína/efectos de los fármacos , Ratas Sprague-Dawley , Ratas Zucker , Relación Estructura-Actividad
6.
J Exp Med ; 212(13): 2189-201, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26621451

RESUMEN

Pathological activation of the Toll-like receptor signaling adaptor protein MYD88 underlies many autoimmune and inflammatory disease states. In the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), the oncogenic MYD88 L265P mutation occurs in 29% of cases, making it the most prevalent activating mutation in this malignancy. IRAK4 kinase accounts for almost all of the biological functions of MYD88, highlighting IRAK4 as a therapeutic target for diseases driven by aberrant MYD88 signaling. Using innovative structure-based drug design methodologies, we report the development of highly selective and bioavailable small molecule IRAK4 inhibitors, ND-2158 and ND-2110. These small molecules suppressed LPS-induced TNF production, alleviated collagen-induced arthritis, and blocked gout formation in mouse models. IRAK4 inhibition promoted killing of ABC DLBCL lines harboring MYD88 L265P, by down-modulating survival signals, including NF-κB and autocrine IL-6/IL-10 engagement of the JAK-STAT3 pathway. In ABC DLBCL xenograft models, IRAK4 inhibition suppressed tumor growth as a single agent, and in combination with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib or the Bcl-2 inhibitor ABT-199. Our findings support pharmacological inhibition of IRAK4 as a therapeutic strategy in autoimmune disorders, in a genetically defined population of ABC DLBCL, and possibly other malignancies dependent on aberrant MYD88 signaling.


Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Agammaglobulinemia Tirosina Quinasa , Animales , Artritis Experimental/tratamiento farmacológico , Enfermedades Autoinmunes/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Descubrimiento de Drogas , Gota/tratamiento farmacológico , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfoma de Células B Grandes Difuso/patología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos DBA , Factor 88 de Diferenciación Mieloide/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal/efectos de los fármacos , Quinasa Syk , Factor de Necrosis Tumoral alfa/biosíntesis
7.
Genomics ; 88(2): 173-84, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16713170

RESUMEN

Imbalanced protease activity has long been recognized in the progression of disease states such as cancer and inflammation. Serpins, the largest family of endogenous protease inhibitors, target a wide variety of serine and cysteine proteases and play a role in a number of physiological and pathological states. The expression profiles of 20 serpins and 105 serine and cysteine proteases were determined across a panel of normal and diseased human tissues. In general, expression of serpins was highly restricted in both normal and diseased tissues, suggesting defined physiological roles for these protease inhibitors. A high correlation in expression for a particular serpin-protease pair in healthy tissues was often predictive of a biological interaction. The most striking finding was the dramatic change observed in the regulation of expression between proteases and their cognate inhibitors in diseased tissues. The loss of regulated serpin-protease matched expression may underlie the imbalanced protease activity observed in pathological states.


Asunto(s)
Cisteína Endopeptidasas/genética , Perfilación de la Expresión Génica/métodos , Regulación Enzimológica de la Expresión Génica , Reacción en Cadena de la Polimerasa/métodos , Serina Endopeptidasas/genética , Serpinas/genética , Secuencia de Aminoácidos , Línea Celular , Línea Celular Transformada , Cisteína Endopeptidasas/metabolismo , Progresión de la Enfermedad , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Datos de Secuencia Molecular , Neoplasias/genética , Neoplasias/metabolismo , Serina Endopeptidasas/metabolismo , Serpinas/metabolismo , Especificidad de la Especie
8.
J Biol Chem ; 280(43): 36013-8, 2005 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-16126724

RESUMEN

Insulin is a key hormone that controls glucose homeostasis. In liver, insulin suppresses gluconeogenesis by inhibiting the transcriptions of phosphoenolpyruvate carboxylase (PEPCK) and glucose-6-phosphatase (G6Pase) genes. In insulin resistance and type II diabetes there is an elevation of hepatic gluconeogenesis, which contributes to hyperglycemia. To search for novel genes that negatively regulate insulin signaling in controlling metabolic pathways, we screened a cDNA library derived from the white adipose tissue of ob/ob mice using a reporter system comprised of the PEPCK promoter placed upstream of the alkaline phosphatase gene. The mitogen-activated dual specificity protein kinase phosphatase 3 (MKP-3) was identified as a candidate gene that antagonized insulin suppression on PEPCK gene transcription from this screen. In this study, we showed that MKP-3 was expressed in insulin-responsive tissues and that its expression was markedly elevated in the livers of insulin-resistant obese mice. In addition, MKP-3 can activate PEPCK promoter in synergy with dexamethasone in hepatoma cells. Furthermore, ectopic expression of MKP-3 in hepatoma cells by adenoviral infection increased the expression of PEPCK and G6Pase genes and led to elevated glucose production. Taken together, our data strongly suggests that MKP-3 plays a role in regulating gluconeogenic gene expression and hepatic gluconeogenesis. Therefore, dysregulation of MKP-3 expression and/or function in liver may contribute to the pathogenesis of insulin resistance and type II diabetes.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Regulación Enzimológica de la Expresión Génica , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Transcripción Genética , Adenoviridae/genética , Tejido Adiposo/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Northern Blotting , Western Blotting , Línea Celular , ADN Complementario/metabolismo , Dexametasona/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Fosfatasa 6 de Especificidad Dual , Biblioteca de Genes , Genes Reporteros , Gluconeogénesis , Glucosa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Hiperglucemia/metabolismo , Insulina/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Regiones Promotoras Genéticas , ARN/metabolismo , ARN Mensajero/metabolismo , Ratas , Distribución Tisular
9.
J Biol Chem ; 278(32): 30187-92, 2003 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-12777378

RESUMEN

Insulin is the key hormone that controls glucose homeostasis. Dysregulation of insulin function causes diabetes mellitus. Among the two major forms of diabetes, type 2 diabetes accounts for over 90% of the affected population. The incidence of type 2 diabetes is highly related to obesity. To find novel proteins potentially involved in obesity-related insulin resistance and type 2 diabetes, a functional expression screen was performed to search for genes that negatively regulate insulin signaling. Specifically, a reporter system comprised of the PEPCK promoter upstream of alkaline phosphatase was used in a hepatocyte cell-based assay to screen an expression cDNA library for genes that reverse insulin-induced repression of PEPCK transcription. The cDNA library used in this study was derived from the white adipose tissue of ob/ob mice, which are highly insulin-resistant. The mitogen-activated dual specificity protein kinase phosphatase 4 (MKP-4) was identified as a candidate gene in this screen. Here we show that MKP-4 is expressed in insulin-responsive tissues and that the expression levels are up-regulated in obese insulin-resistant rodent models. Heterologous expression of MKP-4 in preadipocytes significantly blocked insulin-induced adipogenesis, and overexpression of MKP-4 in adipocytes inhibited insulin-stimulated glucose uptake. Our data suggest that MKP-4 negatively regulates insulin signaling and, consequently, may contribute to the pathogenesis of insulin resistance.


Asunto(s)
Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/fisiología , Células 3T3 , Adipocitos/citología , Adipocitos/metabolismo , Fosfatasa Alcalina/metabolismo , Secuencia de Aminoácidos , Animales , Northern Blotting , Diferenciación Celular , Línea Celular , ADN Complementario/metabolismo , Fosfatasas de Especificidad Dual , Regulación Enzimológica de la Expresión Génica , Biblioteca de Genes , Genes Reporteros , Vectores Genéticos , Glucosa/farmacocinética , Glutatión Peroxidasa , Insulina/metabolismo , Resistencia a la Insulina , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Unión Proteica , Proteínas/genética , ARN/metabolismo , Ratas , Homología de Secuencia de Aminoácido , Transducción de Señal , Distribución Tisular , Transcripción Genética , Transfección , Células Tumorales Cultivadas , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA