Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Oncoimmunology ; 13(1): 2364382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846083

RESUMEN

Triple-negative breast cancer (TNBC) lacks the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). TNBC tumors are not sensitive to endocrine therapy, and standardized TNBC treatment regimens are lacking. TNBC is a more immunogenic subtype of breast cancer, making it more responsive to immunotherapy intervention. Tumor-associated macrophages (TAMs) constitute one of the most abundant immune cell populations in TNBC tumors and contribute to cancer metastasis. This study examines the role of the protein kinase HUNK in tumor immunity. Gene expression analysis using NanoString's nCounter PanCancer Immune Profiling panel identified that targeting HUNK is associated with changes in the IL-4/IL-4 R cytokine signaling pathway. Experimental analysis shows that HUNK kinase activity regulates IL-4 production in mammary tumor cells, and this regulation is dependent on STAT3. In addition, HUNK-dependent regulation of IL-4 secreted from tumor cells induces polarization of macrophages into an M2-like phenotype associated with TAMs. In return, IL-4 induces cancer metastasis and macrophages to produce epidermal growth factor. These findings delineate a paracrine signaling exchange between tumor cells and TAMs regulated by HUNK and dependent on IL-4/IL-4 R. This highlights the potential of HUNK as a target for reducing TNBC metastasis through modulation of the TAM population.


Asunto(s)
Interleucina-4 , Neoplasias de la Mama Triple Negativas , Macrófagos Asociados a Tumores , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/metabolismo , Humanos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Femenino , Animales , Ratones , Interleucina-4/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Línea Celular Tumoral , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Receptores de Interleucina-4/metabolismo , Receptores de Interleucina-4/genética
2.
STAR Protoc ; 5(2): 103024, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38662544

RESUMEN

Umbilical cord blood (CB) is a donor source for hematopoietic cell therapies. Understanding what drives hematopoietic stem and progenitor cell function is critical to our understanding of the usage of CB in hematopoietic cell therapies. Here, we describe how to isolate and analyze the function of human hematopoietic cells from umbilical CB. This protocol demonstrates assays that measure phenotypic properties and hematopoietic cell potency. For complete details on the use and execution of this protocol, please refer to Broxmeyer et al.1.

3.
Mucosal Immunol ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38493956

RESUMEN

Multi-cytokine-producing Th9 cells secrete IL-9 and type 2 cytokines and mediate mouse and human allergic inflammation. However, the cytokines that promote a multi-cytokine secreting phenotype have not been defined. Tumor necrosis factor superfamily member TL1A signals through its receptor DR3 to increase IL-9. Here we demonstrate that TL1A increases expression of IL-9 and IL-13 co-expressing cells in murine Th9 cell cultures, inducing a multi-cytokine phenotype. Mechanistically, this is linked to histone modifications allowing for increased accessibility at the Il9 and Il13 loci. We further show that TL1A alters the transcription factor network underlying expression of IL-9 and IL-13 in Th9 cells and increases binding of transcription factors to Il9 and Il13 loci. TL1A-priming enhances the pathogenicity of Th9 cells in murine models of allergic airway disease through the increased expression of IL-9 and IL-13. Lastly, in both chronic and memory-recall models of allergic airway disease, blockade of TL1A signaling decreases the multi-cytokine Th9 cell population and attenuates the allergic phenotype. Taken together, these data demonstrate that TL1A promotes the development of multi-cytokine Th9 cells that drive allergic airway diseases and that targeting pathogenic T helper cell-promoting cytokines could be an effective approach for modifying disease.

4.
Cell Rep Med ; 4(11): 101259, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37913777

RESUMEN

Umbilical cord blood transplantation is a life-saving treatment for malignant and non-malignant hematologic disorders. It remains unclear how long cryopreserved units remain functional, and the length of cryopreservation is often used as a criterion to exclude older units. We demonstrate that long-term cryopreserved cord blood retains similar numbers of hematopoietic stem and progenitor cells compared with fresh and recently cryopreserved cord blood units. Long-term cryopreserved units contain highly functional cells, yielding robust engraftment in mouse transplantation models. We also leverage differences between units to examine gene programs associated with better engraftment. Transcriptomic analyses reveal that gene programs associated with lineage determination and oxidative stress are enriched in high engrafting cord blood, revealing potential molecular markers to be used as potency markers for cord blood unit selection regardless of length of cryopreservation. In summary, cord blood units cryopreserved for extended periods retain engrafting potential and can potentially be used for patient treatment.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Animales , Ratones , Humanos , Sangre Fetal , Criopreservación
5.
J Interferon Cytokine Res ; 43(6): 229-245, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37319357

RESUMEN

Interleukin 9 (IL-9) is a cytokine with potent proinflammatory properties that plays a central role in pathologies such as allergic asthma, immunity to parasitic infection, and autoimmunity. More recently, IL-9 has garnered considerable attention in tumor immunity. Historically, IL-9 has been associated with a protumor function in hematological malignancies and an antitumor function in solid malignancies. However, recent discoveries of the dynamic role of IL-9 in cancer progression suggest that IL-9 can act as both a pro- or antitumor factor in various hematological and solid malignancies. This review summarizes IL-9-dependent control of tumor growth, regulation, and therapeutic applicability of IL-9 blockade and IL-9-producing cells in cancer.


Asunto(s)
Interleucina-9 , Neoplasias , Humanos , Microambiente Tumoral , Citocinas , Inmunoterapia , Interleucina-33
6.
Front Immunol ; 14: 1026368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911703

RESUMEN

Bone marrow Treg cells (BM Tregs) orchestrate stem cell niches crucial for hematopoiesis. Yet little is known about the molecular mechanisms governing BM Treg homeostasis and function. Here we report that the transcription factor BATF maintains homeostasis and functionality of BM Tregs to facilitate homeostatic regulation of hematopoiesis and B cell development. Treg-specific ablation of BATF profoundly compromised proportions of BM Tregs associated with reduced expression of Treg effector molecules, including CD44, ICOS, KLRG1, and TIGIT. Moreover, BATF deficiency in Tregs led to increased numbers of hematopoietic stem cells (HSCs), multipotent progenitors (MPPs), and granulocyte-macrophage progenitors (GMPs), while reducing the functionality of myeloid progenitors and the generation of common lymphoid progenitors. Furthermore, Tregs lacking BATF failed to support the development of B cells in the BM. Mechanistically, BATF mediated IL-7 signaling to promote expression of effector molecules on BM Tregs and their homeostasis. Our studies reveal a previously unappreciated role for BATF in sustaining BM Treg homeostasis and function to ensure hematopoiesis.


Asunto(s)
Médula Ósea , Linfocitos T Reguladores , Células Madre Hematopoyéticas/metabolismo , Hematopoyesis/fisiología , Homeostasis
7.
J Immunol ; 210(5): 537-546, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36637217

RESUMEN

CD4+ TH cells develop into subsets that are specialized in the secretion of particular cytokines to mediate restricted types of inflammation and immune responses. Among the subsets that promote development of allergic inflammatory responses, IL-9-producing TH9 cells are regulated by a number of transcription factors. We have previously shown that the E26 transformation-specific (Ets) family members PU.1 and Ets translocation variant 5 (ETV5) function in parallel to regulate IL-9. In this study we identified a third member of the Ets family of transcription factors, Ets-related gene (ERG), that mediates IL-9 production in TH9 cells in the absence of PU.1 and ETV5. Chromatin immunoprecipitation assays revealed that ERG interaction at the Il9 promoter region is restricted to the TH9 lineage and is sustained during murine TH9 polarization. Knockdown or knockout of ERG during murine or human TH9 polarization in vitro led to a decrease in IL-9 production in TH9 cells. Deletion of ERG in vivo had modest effects on IL-9 production in vitro or in vivo. However, in the absence of PU.1 and ETV5, ERG was required for residual IL-9 production in vitro and for IL-9 production by lung-derived CD4 T cells in a mouse model of chronic allergic airway disease. Thus, ERG contributes to IL-9 regulation in TH9 cells.


Asunto(s)
Alveolitis Alérgica Extrínseca , Asma , Hipersensibilidad , Neumonía , Animales , Humanos , Ratones , Linfocitos T CD4-Positivos , Diferenciación Celular , Interleucina-9 , Neumonía/metabolismo , Linfocitos T Colaboradores-Inductores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulador Transcripcional ERG/metabolismo
9.
J Med Virol ; 94(12): 6097-6102, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36030555

RESUMEN

Coronavirus disease 2019 (COVID-19) is the illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over 500 million confirmed cases of COVID-19 have been recorded, with six million deaths. Thus, reducing the COVID-19-related medical burden is an unmet need. Despite a vaccine that is successful in preventing COVID-19-caused death, effective medication to relieve COVID-19-associated symptoms and alleviate disease progression is still in high demand. In particular, one in three COVID-19 patients have signs of long COVID syndrome and are termed, long haulers. At present, there are no effective ways to treat long haulers. In this study, we determine the effectiveness of inhibiting mitogen-activated protein kinase (MEK) signaling in preventing SARS-CoV-2-induced lung damage in mice. We showed that phosphorylation of extracellular signal-regulated kinase, a marker for MEK activation, is high in SARS-CoV-2-infected lung tissues of mice and humans. We also showed that selumetinib, a specific inhibitor of the upstream MEK kinases, reduces cell proliferation, reduces lung damage following SARS-CoV-2 infection, and prolongs the survival of the infected mice. Selumetinib has been approved by the US Food and Drug Administration to treat cancer. Further analysis indicates that amphiregulin, an essential upstream molecule, was upregulated following SARS-CoV-2 infection. Our data suggest that MEK signaling activation represents a target for therapeutic intervention strategies against SARS-CoV-2-induced lung damage and that selumetinib may be repurposed to treat COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Anfirregulina , COVID-19/complicaciones , Quinasas MAP Reguladas por Señal Extracelular , Humanos , Pulmón , Quinasas Quinasa Quinasa PAM , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , ARN Viral , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
10.
Sci Immunol ; 7(76): eadd4853, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35857583

RESUMEN

SARS-CoV-2 mRNA vaccination induces robust humoral and cellular immunity in the circulation; however, it is currently unknown whether it elicits effective immune responses in the respiratory tract, particularly against variants of concern (VOCs), including Omicron. We compared the SARS-CoV-2 S-specific total and neutralizing antibody responses, and B and T cell immunity, in the bronchoalveolar lavage fluid (BAL) and blood of COVID-19-vaccinated individuals and hospitalized patients. Vaccinated individuals had significantly lower levels of neutralizing antibody against D614G, Delta (B.1.617.2), and Omicron BA.1.1 in the BAL compared with COVID-19 convalescents despite robust S-specific antibody responses in the blood. Furthermore, mRNA vaccination induced circulating S-specific B and T cell immunity, but in contrast to COVID-19 convalescents, these responses were absent in the BAL of vaccinated individuals. Using a mouse immunization model, we demonstrated that systemic mRNA vaccination alone induced weak respiratory mucosal neutralizing antibody responses, especially against SARS-CoV-2 Omicron BA.1.1 in mice; however, a combination of systemic mRNA vaccination plus mucosal adenovirus-S immunization induced strong neutralizing antibody responses not only against the ancestral virus but also the Omicron BA.1.1 variant. Together, our study supports the contention that the current COVID-19 vaccines are highly effective against severe disease development, likely through recruiting circulating B and T cell responses during reinfection, but offer limited protection against breakthrough infection, especially by the Omicron sublineage. Hence, mucosal booster vaccination is needed to establish robust sterilizing immunity in the respiratory tract against SARS-CoV-2, including infection by the Omicron sublineage and future VOCs.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Inmunidad Mucosa , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas Virales/genética , Anticuerpos Antivirales , ARN Mensajero , COVID-19/prevención & control , Vacunas contra la COVID-19 , Vacunación , Sistema Respiratorio , Anticuerpos Neutralizantes
11.
Nat Commun ; 13(1): 3811, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778404

RESUMEN

Although IL-9 has potent anti-tumor activity in adoptive cell transfer therapy, some models suggest that it can promote tumor growth. Here, we show that IL-9 signaling is associated with poor outcomes in patients with various forms of lung cancer, and is required for lung tumor growth in multiple mouse models. CD4+ T cell-derived IL-9 promotes the expansion of both CD11c+ and CD11c- interstitial macrophage populations in lung tumor models. Mechanistically, the IL-9/macrophage axis requires arginase 1 (Arg1) to mediate tumor growth. Indeed, adoptive transfer of Arg1+ but not Arg1- lung macrophages to Il9r-/- mice promotes tumor growth. Moreover, targeting IL-9 signaling using macrophage-specific nanoparticles restricts lung tumor growth in mice. Lastly, elevated expression of IL-9R and Arg1 in tumor lesions is associated with poor prognosis in lung cancer patients. Thus, our study suggests the IL-9/macrophage/Arg1 axis is a potential therapeutic target for lung cancer therapy.


Asunto(s)
Interleucina-9 , Neoplasias Pulmonares , Macrófagos , Animales , Carcinogénesis/metabolismo , Interleucina-9/genética , Interleucina-9/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos Alveolares/metabolismo , Ratones
12.
Front Immunol ; 13: 859738, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35514957

RESUMEN

Although lung cancer is the leading cause of cancer deaths worldwide, the mechanisms how lung cancer cells evade the immune system remain incompletely understood. Here, we discovered IL-9-dependent signaling mechanisms that drive immune evasion in non-small cell lung cancer (NSCLC). We found increased IL-9 and IL-21 production by T cells in the tumoral region of the lung of patients with NSCLC, suggesting the presence of Th9 cells in the lung tumor microenvironment. Moreover, we noted IL-9 producing Tregs in NSCLC. IL-9 target cells in NSCLC consisted of IL-9R+ tumor cells and tumor-infiltrating lymphocytes. In two murine experimental models of NSCLC, and in vitro, IL-9 prevented cell death and controlled growth of lung adenocarcinoma cells. Targeted deletion of IL-9 resulted in successful lung tumor rejection in vivo associated with an induction of IL-21 and reduction of Treg cells. Finally, anti-IL-9 antibody immunotherapy resulted in suppression of tumor development even in established experimental NSCLC and was associated with reduced IL-10 production in the lung. In conclusion, our findings indicate that IL-9 drives immune escape of lung tumor cells via effects on tumor cell survival and tumor infiltrating T cells. Thus, strategies blocking IL-9 emerge as a new approach for clinical therapy of lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Interleucina-9/metabolismo , Neoplasias Pulmonares/patología , Linfocitos Infiltrantes de Tumor , Ratones , Linfocitos T Reguladores , Microambiente Tumoral
13.
Proc Natl Acad Sci U S A ; 119(14): e2117112119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344430

RESUMEN

SignificanceSTAT3 (signal transducer and activator of transcription 3) is a master transcription factor that organizes cellular responses to cytokines and growth factors and is implicated in inflammatory disorders. STAT3 is a well-recognized therapeutic target for human cancer and inflammatory disorders, but how its function is regulated in a cell type-specific manner has been a major outstanding question. We discovered that Stat3 imposes self-directed regulation through controlling transcription of its own regulator homeodomain-interacting protein kinase 2 (Hipk2) in a T helper 17 (Th17) cell-specific manner. Our validation of the functional importance of the Stat3-Hipk2 axis in Th17 cell development in the pathogenesis of T cell-induced colitis in mice suggests an approach to therapeutically treat inflammatory bowel diseases that currently lack a safe and effective therapy.


Asunto(s)
Colitis , Factor de Transcripción STAT3 , Animales , Diferenciación Celular/genética , Colitis/genética , Colitis/metabolismo , Activación de Linfocitos , Ratones , Proteínas Serina-Treonina Quinasas/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Células Th17
14.
Immunohorizons ; 5(9): 760-771, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34583937

RESUMEN

Alternative splicing (AS) plays an important role in the development of many cell types; however, its contribution to Th subsets has been clearly defined. In this study, we compare mice naive CD4+ Th cells with Th1, Th2, Th17, and T regulatory cells and observed that the majority of AS events were retained intron, followed by skipped-exon events, with at least 1200 genes across cell types affected by AS events. A significant fraction of the AS events, especially retained intron events from the 72-h time point, were no longer observed 2 wk postdifferentiation, suggesting a role for AS in early activation and differentiation via preferential expression of specific isoforms required during T cell activation, but not for differentiation or effector function. Examining the protein consequence of the exon-skipping events revealed an abundance of structural proteins encoding for intrinsically unstructured peptide regions, followed by transmembrane helices, ß strands, and polypeptide turn motifs. Analyses of expression profiles of RNA-binding proteins (RBPs) and their cognate binding sites flanking the discovered AS events revealed an enrichment for specific RBP recognition sites in each of the Th subsets. Integration with publicly available chromatin immunoprecipitation sequencing datasets for transcription factors support a model wherein lineage-determining transcription factors impact the RBP profile within the differentiating cells, and this differential expression contributes to AS of the transcriptome via a cascade of cell type-specific posttranscriptional rewiring events.


Asunto(s)
Empalme Alternativo/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Sitios de Unión , Células Cultivadas , Conjuntos de Datos como Asunto , Activación de Linfocitos/genética , Ratones , Modelos Animales , Cultivo Primario de Células , Proteínas de Unión al ARN/metabolismo , RNA-Seq , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo , Factores de Transcripción/metabolismo
15.
JCI Insight ; 6(14)2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34138758

RESUMEN

Signal transducer and activator of transcription 4 (STAT4) is expressed in hematopoietic cells and plays a key role in the differentiation of T helper 1 cells. Although STAT4 is required for immunity to intracellular pathogens, the T cell-independent protective mechanisms of STAT4 are not clearly defined. In this report, we demonstrate that STAT4-deficient mice were acutely sensitive to methicillin-resistant Staphylococcus aureus (MRSA) infection. We show that STAT4 was expressed in neutrophils and activated by IL-12 via a JAK2-dependent pathway. We demonstrate that STAT4 was required for multiple neutrophil functions, including IL-12-induced ROS production, chemotaxis, and production of the neutrophil extracellular traps. Importantly, myeloid-specific and neutrophil-specific deletion of STAT4 resulted in enhanced susceptibility to MRSA, demonstrating the key role of STAT4 in the in vivo function of these cells. Thus, these studies identify STAT4 as an essential regulator of neutrophil functions and a component of innate immune responses in vivo.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina/inmunología , Neutrófilos/inmunología , Factor de Transcripción STAT4/metabolismo , Infecciones Estafilocócicas/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Interleucina-12/metabolismo , Janus Quinasa 2/metabolismo , Sistema de Señalización de MAP Quinasas/inmunología , Ratones , Ratones Noqueados , Neutrófilos/metabolismo , Factor de Transcripción STAT4/genética , Infecciones Estafilocócicas/microbiología
16.
Immunity ; 54(6): 1200-1218.e9, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33951416

RESUMEN

Tissue macrophages self-renew during homeostasis and produce inflammatory mediators upon microbial infection. We examined the relationship between proliferative and inflammatory properties of tissue macrophages by defining the impact of the Wnt/ß-catenin pathway, a central regulator of self-renewal, in alveolar macrophages (AMs). Activation of ß-catenin by Wnt ligand inhibited AM proliferation and stemness, but promoted inflammatory activity. In a murine influenza viral pneumonia model, ß-catenin-mediated AM inflammatory activity promoted acute host morbidity; in contrast, AM proliferation enabled repopulation of reparative AMs and tissue recovery following viral clearance. Mechanistically, Wnt treatment promoted ß-catenin-HIF-1α interaction and glycolysis-dependent inflammation while suppressing mitochondrial metabolism and thereby, AM proliferation. Differential HIF-1α activities distinguished proliferative and inflammatory AMs in vivo. This ß-catenin-HIF-1α axis was conserved in human AMs and enhanced HIF-1α expression associated with macrophage inflammation in COVID-19 patients. Thus, inflammatory and reparative activities of lung macrophages are regulated by ß-catenin-HIF-1α signaling, with implications for the treatment of severe respiratory diseases.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Autorrenovación de las Células/inmunología , Interacciones Huésped-Patógeno/inmunología , Macrófagos/inmunología , SARS-CoV-2/inmunología , Biomarcadores , COVID-19/metabolismo , Citocinas/metabolismo , Susceptibilidad a Enfermedades/inmunología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Mediadores de Inflamación/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Transducción de Señal
17.
Sci Immunol ; 6(55)2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33419791

RESUMEN

Much remains unknown about the roles of CD4+ T helper cells in shaping localized memory B cell and CD8+ T cell immunity in the mucosal tissues. Here, we report that lung T helper cells provide local assistance for the optimal development of tissue-resident memory B and CD8+ T cells after the resolution of primary influenza virus infection. We have identified a population of T cells in the lung that exhibit characteristics of both follicular T helper and TRM cells, and we have termed these cells as resident helper T (TRH) cells. Optimal TRH cell formation was dependent on transcription factors involved in T follicular helper and resident memory T cell development including BCL6 and Bhlhe40. We show that TRH cells deliver local help to CD8+ T cells through IL-21-dependent mechanisms. Our data have uncovered the presence of a tissue-resident helper T cell population in the lung that plays a critical role in promoting the development of protective B cell and CD8+ T cell responses.


Asunto(s)
Inmunidad Mucosa , Gripe Humana/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Virus de la Influenza A/inmunología , Gripe Humana/virología , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Masculino , Células B de Memoria/inmunología , Células T de Memoria/inmunología , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/virología , Linfocitos T Colaboradores-Inductores/metabolismo
18.
Front Allergy ; 2: 679121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35387064

RESUMEN

Mast cells (MCs) are innate immune cells of hematopoietic origin localized in the mucosal tissues of the body and are broadly implicated in the pathogenesis of allergic inflammation. Transcription factors have a pivotal role in the development and differentiation of mast cells in response to various microenvironmental signals encountered in the resident tissues. Understanding the regulation of mast cells by transcription factors is therefore vital for mechanistic insights into allergic diseases. In this review we summarize advances in defining the transcription factors that impact the development of mast cells throughout the body and in specific tissues, and factors that are involved in responding to the extracellular milieu. We will further describe the complex networks of transcription factors that impact mast cell physiology and expansion during allergic inflammation and functions from degranulation to cytokine secretion. As our understanding of the heterogeneity of mast cells becomes more detailed, the contribution of specific transcription factors in mast cell-dependent functions will potentially offer new pathways for therapeutic targeting.

19.
Nat Commun ; 11(1): 4882, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32985505

RESUMEN

T helper cell differentiation requires lineage-defining transcription factors and factors that have shared expression among multiple subsets. BATF is required for development of multiple Th subsets but functions in a lineage-specific manner. BATF is required for IL-9 production in Th9 cells but in contrast to its function as a pioneer factor in Th17 cells, BATF is neither sufficient nor required for accessibility at the Il9 locus. Here we show that STAT5 is the earliest factor binding and remodeling the Il9 locus to allow BATF binding in both mouse and human Th9 cultures. The ability of STAT5 to mediate accessibility for BATF is observed in other Th lineages and allows acquisition of the IL-9-secreting phenotype. STAT5 and BATF convert Th17 cells into cells that mediate IL-9-dependent effects in allergic airway inflammation and anti-tumor immunity. Thus, BATF requires the STAT5 signal to mediate plasticity at the Il9 locus.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Interleucina-9/inmunología , Factor de Transcripción STAT5/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Diferenciación Celular , Femenino , Humanos , Interleucina-9/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción STAT5/genética , Linfocitos T Colaboradores-Inductores/citología , Células Th17/inmunología
20.
JCI Insight ; 5(18)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32809971

RESUMEN

Acute graft-versus-host disease (aGVHD) can occur after hematopoietic cell transplant in patients undergoing treatment for hematological malignancies or inborn errors. Although CD4+ T helper (Th) cells play a major role in aGVHD, the mechanisms by which they contribute, particularly within the intestines, have remained elusive. We have identified a potentially novel subset of Th cells that accumulated in the intestines and produced the serine protease granzyme A (GrA). GrA+ Th cells were distinct from other Th lineages and exhibited a noncytolytic phenotype. In vitro, GrA+ Th cells differentiated in the presence of IL-4, IL-6, and IL-21 and were transcriptionally unique from cells cultured with either IL-4 or the IL-6/IL-21 combination alone. In vivo, both STAT3 and STAT6 were required for GrA+ Th cell differentiation and played roles in maintenance of the lineage identity. Importantly, GrA+ Th cells promoted aGVHD-associated morbidity and mortality and contributed to crypt destruction within intestines but were not required for the beneficial graft-versus-leukemia effect. Our data indicate that GrA+ Th cells represent a distinct Th subset and are critical mediators of aGVHD.


Asunto(s)
Enfermedad Injerto contra Huésped/patología , Efecto Injerto vs Leucemia/inmunología , Granzimas/fisiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Intestinos/patología , Activación de Linfocitos/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Femenino , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/metabolismo , Neoplasias Hematológicas/terapia , Intestinos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción STAT3/fisiología , Factor de Transcripción STAT6/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA