Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37631049

RESUMEN

Xerostomia, commonly known as dry mouth, is a widespread oral health malfunction characterized by decreased salivary flow. This condition results in discomfort, impaired speech and mastication, dysphagia, heightened susceptibility to oral infections, and ultimately, a diminished oral health-related quality of life. The etiology of xerostomia is multifaceted, with primary causes encompassing the use of xerostomic medications, radiation therapy to the head and neck, and systemic diseases such as Sjögren's syndrome. Consequently, there is a growing interest in devising management strategies to address this oral health issue, which presents significant challenges due to the intricate nature of saliva. Historically, natural products have served medicinal purposes, and in contemporary pharmaceutical research and development, they continue to play a crucial role, including the treatment of xerostomia. In this context, the present review aims to provide an overview of the current state of knowledge regarding natural compounds and extracts for xerostomia treatment, paving the way for developing novel therapeutic strategies for this common oral health issue.

2.
Polymers (Basel) ; 15(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36616519

RESUMEN

Luteolin (LUT), a bioactive flavonoid, possesses various pharmacological properties, including antioxidant, antimicrobial, anti-allergic, cardio-protective, and anti-cancer activity. Among them, LUT's administration for the treatment of periodontal disease is very promising. However, its low water solubility magnifies the challenge of formulating LUT into an effective dosage form. In this vein, the aim of the present study examines the preparation of amorphous solid dispersions (ASD) for the solubility improvement of LUT in saliva. At first, the physicochemical properties of the active pharmaceutical ingredient (API) were studied before the selection of the most suitable ASD matrix/carrier. For this reason, six commonly used polymeric ASD matrix/carriers (namely, povidone, PVP; copovidone, coPVP; hydroxypropyl cellulose, HPC-SL; hydroxypropyl methyl cellulose acetate succinate, HPMC-AS; Eudragit® RS, Eud-RS; and Soluplus®, SOL) were screened via the film casting method, as to whether they could suspend the drug's recrystallization. The most promising matrix/carriers were then evaluated, based on their ability to inhibit LUT's precipitation after its solubilization, via the solvent shift method. Based on both screening methods, it was determined that PVP was the most promising matrix/carrier for the preparation of LUT's ASDs. Hence, in a further step, after the successful testing of components' miscibility, LUT-PVP ASDs were prepared via the solvent evaporation method. These systems (examined via powder X-ray diffractometry, pXRD) showed full API amorphization immediately after preparation and excellent physical stability (since they were stable after 3 months of storage). The study of LUT-PVP ASD's ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) spectra demonstrated strong H-bonds between the molecules of the drug and the matrix/carrier, while molecular dynamics (MD) simulations were able to shed light on these drug-matrix/carrier interactions, at a molecular level. Finally, in vitro dissolution studies in simulated saliva proved that the prepared ASDs were able to significantly enhance LUT's dissolution profile. Hence, according to findings of the present work, the preparation of LUT-ASDs utilizing PVP as the polymeric matrix/carrier is regarded as a highly promising technique for the improvement of API's solubility in the oral cavity.

3.
Mol Pharm ; 17(7): 2703-2720, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32520564

RESUMEN

A crucial step for the selection of proper amorphous solid dispersion (ASD) matrix carriers is the in-depth assessment of drug/polymer physicochemical properties. In this context, the present study extends the work of previously published attempts by evaluating the formation of simvastatin (SIM)-poly(vinylpyrrolidone) (PVP) ASDs with the aid of thermodynamic and molecular modeling. Specifically, the implementation of both Flory-Huggins lattice theory and molecular dynamics (MD) simulations was able to predict the miscibility between the two components (a finding that was experimentally verified via differential scanning calorimetry (DSC) and hot stage polarized microscopy), while a complete temperature-concentration phase-transition profile was constructed, leading to the identification of the thermodynamically metastable and unstable ASD zones. Furthermore, as in the case of previously published reports, the analysis of the ASDs via Fourier transform infrared spectroscopy did not clarify the type and extent of observed molecular interactions. Hence, in the present study, a computer-based MD simulation model was developed for the first time in order to gain an insight into the properties of the observed interactions. MD amorphous assemblies of SIM, PVP, and their mixtures were initially developed, and the calculated glass transition temperatures were in close agreement with experimentally obtained results, indicating that the developed models could be considered as realistic representations of the actual systems. Furthermore, molecular interactions evaluation via radial distribution function and radius of gyration analysis revealed that increasing SIM content results in a significant PVP chain shrinkage, which eventually leads to SIM-SIM amorphous intermolecular interactions, leading to the formation of amorphous drug zones. Finally, MD-based results were experimentally verified via DSC.


Asunto(s)
Simulación de Dinámica Molecular , Polímeros/química , Povidona/química , Simvastatina/química , Rastreo Diferencial de Calorimetría , Cristalización , Enlace de Hidrógeno , Transición de Fase , Solubilidad , Termodinámica , Temperatura de Transición , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA