Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5342, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937445

RESUMEN

In vertebrates, folliculogenesis and ovulation are regulated by two distinct pituitary gonadotropins: follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Currently, there is an intriguing consensus that a single hypothalamic neurohormone, gonadotropin-releasing hormone (GnRH), regulates the secretion of both FSH and LH, although the required timing and functions of FSH and LH are different. However, recent studies in many non-mammalian vertebrates indicated that GnRH is dispensable for FSH function. Here, by using medaka as a model teleost, we successfully identify cholecystokinin as the other gonadotropin regulator, FSH-releasing hormone (FSH-RH). Our histological and in vitro analyses demonstrate that hypothalamic cholecystokinin-expressing neurons directly affect FSH cells through the cholecystokinin receptor, Cck2rb, thereby increasing the expression and release of FSH. Remarkably, the knockout of this pathway minimizes FSH expression and results in a failure of folliculogenesis. Here, we propose the existence of the "dual GnRH model" in vertebrates that utilize both FSH-RH and LH-RH.


Asunto(s)
Hormona Folículo Estimulante , Hormona Liberadora de Gonadotropina , Hipotálamo , Oryzias , Animales , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Folículo Estimulante/metabolismo , Hormona Folículo Estimulante/genética , Femenino , Oryzias/metabolismo , Oryzias/genética , Hipotálamo/metabolismo , Neuronas/metabolismo , Hormona Luteinizante/metabolismo , Folículo Ovárico/metabolismo , Ovulación/genética
2.
Nature ; 589(7841): 258-263, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33268894

RESUMEN

Animal behaviours that are superficially similar can express different intents in different contexts, but how this flexibility is achieved at the level of neural circuits is not understood. For example, males of many species can exhibit mounting behaviour towards same- or opposite-sex conspecifics1, but it is unclear whether the intent and neural encoding of these behaviours are similar or different. Here we show that female- and male-directed mounting in male laboratory mice are distinguishable by the presence or absence of ultrasonic vocalizations (USVs)2-4, respectively. These and additional behavioural data suggest that most male-directed mounting is aggressive, although in rare cases it can be sexual. We investigated whether USV+ and USV- mounting use the same or distinct hypothalamic neural substrates. Micro-endoscopic imaging of neurons positive for oestrogen receptor 1 (ESR1) in either the medial preoptic area (MPOA) or the ventromedial hypothalamus, ventrolateral subdivision (VMHvl) revealed distinct patterns of neuronal activity during USV+ and USV- mounting, and the type of mounting could be decoded from population activity in either region. Intersectional optogenetic stimulation of MPOA neurons that express ESR1 and vesicular GABA transporter (VGAT) (MPOAESR1∩VGAT neurons) robustly promoted USV+ mounting, and converted male-directed attack to mounting with USVs. By contrast, stimulation of VMHvl neurons that express ESR1 (VMHvlESR1 neurons) promoted USV- mounting, and inhibited the USVs evoked by female urine. Terminal stimulation experiments suggest that these complementary inhibitory effects are mediated by reciprocal projections between the MPOA and VMHvl. Together, these data identify a hypothalamic subpopulation that is genetically enriched for neurons that causally induce a male reproductive behavioural state, and indicate that reproductive and aggressive states are represented by distinct population codes distributed between MPOAESR1 and VMHvlESR1 neurons, respectively. Thus, similar behaviours that express different internal states are encoded by distinct hypothalamic neuronal populations.


Asunto(s)
Agresión/fisiología , Hipotálamo/citología , Hipotálamo/fisiología , Conducta Sexual Animal/fisiología , Animales , Copulación , Receptor alfa de Estrógeno/metabolismo , Femenino , Homosexualidad Masculina , Masculino , Ratones , Optogenética , Área Preóptica/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
3.
Endocrinology ; 159(2): 1228-1241, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29300923

RESUMEN

Some hypothalamic neurons expressing estrogen receptor α (Esr1) are thought to transmit a gonadal estrogen feedback signal to gonadotropin-releasing hormone 1 (GnRH1) neurons, which is the final common pathway for feedback regulation of reproductive functions. Moreover, estrogen-sensitive neurons are suggested to control sexual behaviors in coordination with reproduction. In mammals, hypothalamic estrogen-sensitive neurons release the peptide kisspeptin and regulate GnRH1 neurons. However, a growing body of evidence in nonmammalian species casts doubt on the regulation of GnRH1 neurons by kisspeptin neurons. As a step toward understanding how estrogen regulates neuronal circuits for reproduction and sex behavior in vertebrates in general, we generated a transgenic (Tg) medaka that expresses enhanced green fluorescent protein (EGFP) specifically in esr1-expressing neurons (esr1 neurons) and analyzed their axonal projections. We found that esr1 neurons in the preoptic area (POA) project to the gnrh1 neurons. We also demonstrated by transcriptome and histological analyses that these esr1 neurons are glutamatergic or γ-aminobutyric acidergic (GABAergic) but not kisspeptinergic. We therefore suggest that glutamatergic and GABAergic esr1 neurons in the POA regulate gnrh1 neurons. This hypothesis is consistent with previous studies in mice that found that glutamatergic and GABAergic transmission is critical for estrogen-dependent changes in GnRH1 neuron firing. Thus, we propose that this neuronal circuit may provide an evolutionarily conserved mechanism for regulation of reproduction. In addition, we showed that telencephalic esr1 neurons project to medulla, which may control sexual behavior. Moreover, we found that some POA-esr1 neurons coexpress progesterone receptors. These neurons may form the neuronal circuits that regulate reproduction and sex behavior in response to the serum estrogen/progesterone.


Asunto(s)
Axones/fisiología , Receptor alfa de Estrógeno/genética , Proteínas Fluorescentes Verdes/genética , Neuronas/metabolismo , Oryzias , Animales , Animales Modificados Genéticamente , Receptor alfa de Estrógeno/metabolismo , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Red Nerviosa/metabolismo , Oryzias/genética , Oryzias/metabolismo , Área Preóptica/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Coloración y Etiquetado , Telencéfalo/metabolismo
4.
Endocrinology ; 159(1): 163-183, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29053844

RESUMEN

The kisspeptin neuronal system, which consists of a neuropeptide kisspeptin and its receptor Gpr54, is considered in mammals a key factor of reproductive regulation, the so-called hypothalamic-pituitary-gonadal (HPG) axis. However, in nonmammalian vertebrates, especially in teleosts, existence of kisspeptin regulation on the HPG axis is still controversial. In this study, we applied multidisciplinary techniques to a teleost fish, medaka, and examined possible kisspeptin regulation on the HPG axis. First, we generated knockout medaka for kisspeptin-related genes and found that they show normal fertility, gonadal maturation, and expression of gonadotropins. Moreover, the firing activity of GnRH1 neurons recorded by the patch clamp technique was not altered by kisspeptin application. Furthermore, in goldfish, in vivo kisspeptin administration did not show any positive effect on HPG axis regulation. However, as kisspeptin genes are completely conserved among vertebrates except birds, we surmised that kisspeptin should have some important nonreproductive functions in vertebrates. Therefore, to discover novel functions of kisspeptin, we generated a gpr54-1:enhanced green fluorescent protein (EGFP) transgenic medaka, whose gpr54-1-expressing cells are specifically labeled by EGFP. Analysis of neuronal projection of gpr54-1:EGFP-expressing neurons showed that these neurons in the ventrolateral preoptic area project to the pituitary and are probably involved in endocrine regulation other than gonadotropin release. Furthermore, combination of deep sequencing, histological, and electrophysiological analyses revealed various novel neural systems that are under control of kisspeptin neurons-that is, those expressing neuropeptide Yb, cholecystokinin, isotocin, vasotocin, and neuropeptide B. Thus, our new strategy to genetically label receptor-expressing neurons gives insights into various kisspeptin-dependent neuronal systems that may be conserved in vertebrates.


Asunto(s)
Evolución Molecular , Proteínas de Peces/metabolismo , Kisspeptinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Área Preóptica/metabolismo , Receptores de Kisspeptina-1/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Axones/metabolismo , Axones/fisiología , Cruzamientos Genéticos , Femenino , Proteínas de Peces/genética , Técnicas de Inactivación de Genes , Gónadas/citología , Gónadas/metabolismo , Gónadas/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Sistema Hipotálamo-Hipofisario/citología , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiología , Kisspeptinas/genética , Masculino , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/fisiología , Oryzias/genética , Oryzias/metabolismo , Técnicas de Placa-Clamp , Hormonas Hipofisarias/metabolismo , Área Preóptica/citología , Área Preóptica/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Kisspeptina-1/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
5.
Endocrinology ; 155(2): 536-47, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24248459

RESUMEN

Two types of gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH), are important pituitary hormones for sexual maturation and reproduction, and both of them are centrally regulated by gonadotropin-releasing hormone (GnRH) from the hypothalamus. In mammals, these two gonadotropins are secreted from a single type of gonadotrope. The mechanisms of differential regulation by GnRH of the release of two types of gonadotropins with different secretory profiles are still unknown. In teleosts, however, LH and FSH are secreted from separate cellular populations, unlike in mammals. This feature makes them useful for studying the regulatory mechanisms of LH and FSH secretions independently. Here, we generated transgenic medaka lines that express Ca(2+) indicator protein, inverse-pericam, specifically in the LH or FSH cells. We performed cell-type-specific Ca(2+) imaging of LH and FSH cells, respectively, using the whole brain-pituitary preparations of these transgenic fish in which all neural circuits and GnRH neuronal projection to the pituitary are kept intact. LH and FSH cells showed different Ca(2+) responses to GnRH. The results suggest differential regulation mechanisms for LH and FSH release by GnRH. Moreover, we also succeeded in detecting the effect on LH cells of endogenous GnRH peptide, which was released by electrical stimulation of the axons of GnRH1 neurons. Thus, our newly developed experimental model system using the whole brain-pituitary in vitro preparation of the transgenic medaka is a powerful tool for analyzing the differential regulatory mechanisms of the release of LH and FSH by multisynaptic neural inputs to the pituitary.


Asunto(s)
Encéfalo/fisiología , Hormona Folículo Estimulante/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Luteinizante/metabolismo , Hipófisis/fisiología , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Calcio/metabolismo , Oryzias , Hipófisis/metabolismo
6.
Endocrinology ; 153(7): 3394-404, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22544888

RESUMEN

GnRH neurons in the preoptic area and hypothalamus control the secretion of GnRH and form the final common pathway for hypothalamic-pituitary-gonadal axis regulation in vertebrates. Temporal regulation of reproduction by coordinating endogenous physiological conditions and behaviors is important for successful reproduction. Here, we examined the temporal regulation of reproduction by measuring time-of-day-dependent changes in the electrical activity of GnRH1 neurons and in levels of expression of pituitary gonadotropin mRNA using a daily spawning teleost, medaka (Oryzias latipes). First, we performed on-cell patch-clamp recordings from GnRH1 neurons that directly project to the pituitary, using gnrh1-green fluorescent protein transgenic medaka. The spontaneous firing activity of GnRH1 neurons showed time-of-day-dependent changes: overall, the firing activity in the afternoon was higher than in the morning. Next, we examined the daily changes in the pituitary gonadotropin transcription level. The expression levels of lhb and fshb mRNA also showed changes related to time of day, peaking during the lights-off period. Finally, we analyzed effects of GnRH on the pituitary. We demonstrated that incubation of isolated pituitary with GnRH increases lhb mRNA transcription several hours after GnRH stimulation, unlike the well-known immediate LH releasing effect of GnRH. From these results, we propose a working hypothesis concerning the temporal regulation of the ovulatory cycle in the brain and pituitary of female medaka.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Ovulación/fisiología , Precursores de Proteínas/metabolismo , Animales , Electrofisiología/métodos , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Hormona Luteinizante/metabolismo , Masculino , Neuronas/metabolismo , Oryzias , Técnicas de Placa-Clamp , Hipófisis/metabolismo , ARN Mensajero/metabolismo , Factores de Tiempo , Transcripción Genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA