Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Adv Sci (Weinh) ; 11(28): e2401772, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38767114

RESUMEN

Polycystic ovary syndrome (PCOS) is associated with a low-grade inflammation, but it is unknown how hyperandrogenism, the hallmark of PCOS, affects the immune system. Using a PCOS-like mouse model, it is demonstrated that hyperandrogenism affects immune cell populations in reproductive, metabolic, and immunological tissues differently in a site-specific manner. Co-treatment with an androgen receptor antagonist prevents most of these alterations, demonstrating that these effects are mediated through androgen receptor activation. Dihydrotestosterone (DHT)-exposed mice displayed a drastically reduced eosinophil population in the uterus and visceral adipose tissue (VAT). A higher frequency of natural killer (NK) cells and elevated levels of IFN-γ and TNF-α are seen in uteri of androgen-exposed mice, while NK cells in VAT and spleen displayed a higher expression level of CD69, a marker of activation or tissue residency. Distinct alterations of macrophages in the uterus, ovaries, and VAT are also found in DHT-exposed mice and can potentially be linked to PCOS-like traits of the model. Indeed, androgen-exposed mice are insulin-resistant, albeit unaltered fat mass. Collectively, it is demonstrated that hyperandrogenism causes tissue-specific alterations of immune cells in reproductive organs and VAT, which can have considerable implications on tissue function and contribute to the reduced fertility and metabolic comorbidities associated with PCOS.


Asunto(s)
Andrógenos , Modelos Animales de Enfermedad , Síndrome del Ovario Poliquístico , Animales , Síndrome del Ovario Poliquístico/inmunología , Síndrome del Ovario Poliquístico/metabolismo , Femenino , Ratones , Andrógenos/metabolismo , Ratones Endogámicos C57BL , Hiperandrogenismo/inmunología , Hiperandrogenismo/metabolismo
2.
Blood Adv ; 8(8): 1981-1990, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38507738

RESUMEN

ABSTRACT: Bruton's tyrosine kinase (BTK) is an enzyme needed for B-cell survival, and its inhibitors have become potent targeted medicines for the treatment of B-cell malignancies. The initial activation event of cytoplasmic protein-tyrosine kinases is the phosphorylation of a conserved regulatory tyrosine in the catalytic domain, which in BTK is represented by tyrosine 551. In addition, the tyrosine 223 (Y223) residue in the SRC homology 3 (SH3) domain has, for more than 2 decades, generally been considered necessary for full enzymatic activity. The initial recognition of its potential importance stems from transformation assays using nonlymphoid cells. To determine the biological significance of this residue, we generated CRISPR-Cas-mediated knockin mice carrying a tyrosine to phenylalanine substitution (Y223F), maintaining aromaticity and bulkiness while prohibiting phosphorylation. Using a battery of assays to study leukocyte subsets and the morphology of lymphoid organs, as well as the humoral immune responses, we were unable to detect any difference between wild-type mice and the Y223F mutant. Mice resistant to irreversible BTK inhibitors, through a cysteine 481 to serine substitution (C481S), served as an additional immunization control and mounted similar humoral immune responses as Y223F and wild-type animals. Collectively, our findings suggest that phosphorylation of Y223 serves as a useful proxy for phosphorylation of phospholipase Cγ2 (PLCG2), the endogenous substrate of BTK. However, in contrast to a frequently held conception, this posttranslational modification is dispensable for the function of BTK.


Asunto(s)
Proteínas Tirosina Quinasas , Dominios Homologos src , Ratones , Animales , Agammaglobulinemia Tirosina Quinasa , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Secuencia de Aminoácidos , Tirosina
4.
Elife ; 122023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37401759

RESUMEN

Variations in B cell numbers are associated with polycystic ovary syndrome (PCOS) through unknown mechanisms. Here, we demonstrate that B cells are not central mediators of PCOS pathology and that their frequencies are altered as a direct effect of androgen receptor activation. Hyperandrogenic women with PCOS have increased frequencies of age-associated double-negative B memory cells and increased levels of circulating immunoglobulin M (IgM). However, the transfer of serum IgG from women into wild-type female mice induces only an increase in body weight. Furthermore, RAG1 knockout mice, which lack mature T- and B cells, fail to develop any PCOS-like phenotype. In wild-type mice, co-treatment with flutamide, an androgen receptor antagonist, prevents not only the development of a PCOS-like phenotype but also alterations of B cell frequencies induced by dihydrotestosterone (DHT). Finally, B cell-deficient mice, when exposed to DHT, are not protected from developing a PCOS-like phenotype. These results urge further studies on B cell functions and their effects on autoimmune comorbidities highly prevalent among women with PCOS.


Polycystic ovary syndrome is a lifelong condition associated with disrupted hormone levels, which affects around 15-20% of women. Characterised by increased levels of male sex hormones released by ovaries and adrenal glands, the condition affects menstrual cycles and can cause infertility and diabetes. Alongside the increase in male sex hormones, changes in the number of B cells have recently been observed in polycystic ovary syndrome. B cells produce antibodies that are important for fighting infection. However, it is thought that they might aggravate the condition by releasing antibodies and other inflammatory molecules which instead attack the body. It remained unclear whether changes in the B cell numbers were a result of excessive hormone levels or whether the B cells themselves were responsible for increasing the levels of male sex hormones. Ascani et al. showed that exposing female mice to excess male sex hormones leads to symptoms of polycystic ovary syndrome and causes the same changes to B cell frequencies as observed in women. This effect was prevented by simultaneously treating mice with a drug that blocks the action of male sex hormones. On the other hand, transferring antibodies from women with polycystic ovary syndrome to mice led to greater body weight and variation in B cell numbers. However, it did not result in clear symptoms of polycystic ovary syndrome. Furthermore, mice without B cells still developed symptoms when exposed to male sex hormones, showing that B cells alone are not solely responsible for the development of the condition. Taken together, the experiments show that B cells are not central mediators of polycystic ovary syndrome and the variation in their numbers is due to excess male sex hormones. This raises the question of whether B cells are an appropriate target for the treatment of this complex condition and paves the way for studies on how other immune cells are altered by hormones. Future work should also investigate how B cell function affects symptoms associated with polycystic ovary syndrome, given the association between antibody transfer and weight gain in mice.


Asunto(s)
Síndrome del Ovario Poliquístico , Humanos , Femenino , Ratones , Animales , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/patología , Andrógenos , Peso Corporal , Fenotipo
5.
Cancer Res ; 83(10): 1628-1645, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36919330

RESUMEN

Sex-driven immune differences can affect tumor progression and the landscape of the tumor microenvironment. Deeper understanding of these differences in males and females can inform patient selection to improve sex-optimized immunotherapy treatments. In this study, single-cell RNA sequencing and protein analyses uncovered a subpopulation of myeloid cells in pancreatic lesions associated with an immune-excluded tumor phenotype and effector T-cell exhaustion exclusively in females. This myeloid subpopulation was positively correlated with poor survival and genetic signatures of M2-like macrophages and T-cell exhaustion in females. The G-protein coupled receptor formyl peptide receptor 2 (FPR2) mediated these immunosuppressive effects. In vitro, treatment of myeloid cells with a specific FPR2 antagonist prevented exhaustion and enhanced cytotoxicity of effector cells. Proteomic analysis revealed high expression of immunosuppressive secretory proteins PGE2 and galectin-9, enriched integrin pathway, and reduced proinflammatory signals like TNFα and IFNγ in female M2-like macrophages upon FPR2 agonist treatment. In addition, myeloid cells treated with FPR2 agonists induced TIM3 and PD-1 expression only in female T cells. Treatment with anti-TIM3 antibodies reversed T-cell exhaustion and stimulated their ability to infiltrate and kill pancreatic spheroids. In vivo, progression of syngeneic pancreatic tumors was significantly suppressed in FPR2 knockout (KO) female mice compared with wild-type (WT) female mice and to WT and FPR2 KO male mice. In female mice, inoculation of tumors with FPR2 KO macrophages significantly reduced tumor growth compared with WT macrophages. Overall, this study identified an immunosuppressive function of FPR2 in females, highlighting a potential sex-specific precision immunotherapy strategy. SIGNIFICANCE: FPR2 is a sex-dependent mediator of macrophage function in pancreatic cancer and can be targeted to reprogram macrophages and stimulate antitumor immunity in females.


Asunto(s)
Neoplasias Pancreáticas , Microambiente Tumoral , Ratones , Masculino , Femenino , Animales , Proteómica , Agotamiento de Células T , Células Mieloides , Ratones Noqueados , Neoplasias Pancreáticas/genética
6.
Cancer Immunol Res ; 11(2): 217-227, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36546872

RESUMEN

Extracellular vesicles (EV) are important mediators of intercellular communication and are potential candidates for cancer immunotherapy. Immune checkpoint blockade, specifically targeting the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis, mitigates T-cell exhaustion, but is only effective in a subset of patients with cancer. Reasons for therapy resistance include low primary T-cell activation to cancer antigens, poor antigen presentation, and reduced T-cell infiltration into the tumor. Therefore, combination strategies have been extensively explored. Here, we investigated whether EV therapy could induce susceptibility to anti-PD-1 or anti-PD-L1 therapy in a checkpoint-refractory B16 melanoma model. Injection of dendritic cell-derived EVs, but not checkpoint blockade, induced a potent antigen-specific T-cell response and reduced tumor growth in tumor-bearing mice. Combination therapy of EVs and anti-PD-1 or anti-PD-L1 potentiated immune responses to ovalbumin- and α-galactosylceramide-loaded EVs in the therapeutic model. Moreover, combination therapy resulted in increased survival in a prophylactic tumor model. This demonstrates that EVs can induce potent antitumor immune responses in checkpoint refractory cancer and induce anti-PD-1 or anti-PD-L1 responses in a previously nonresponsive tumor model.


Asunto(s)
Vesículas Extracelulares , Melanoma Experimental , Ratones , Animales , Inmunoterapia/métodos , Antígeno B7-H1 , Melanoma Experimental/terapia , Vesículas Extracelulares/metabolismo
7.
iScience ; 25(11): 105317, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36310582

RESUMEN

Immunotherapy for cancer that aims to promote T cell anti-tumor activity has changed current clinical practice, where some previously lethal cancers have now become treatable. However, clinical trials with low response rates have been disappointing for pancreatic ductal adenocarcinoma (PDAC). One suggested explanation is the accumulation of dominantly immunosuppressive tumor-associated macrophages and myeloid-derived suppressor cells in the tumor microenvironment (TME). Using retrospectively collected tumor specimens and transcriptomic data from PDAC, we demonstrate that expression of the scavenger receptor MARCO correlates with poor prognosis and a lymphocyte-excluding tumor phenotype. PDAC cell lines produce IL-10 and induce high expression of MARCO in myeloid cells, and this was further enhanced during hypoxic conditions. These myeloid cells suppressed effector T and natural killer (NK) cells and blocked NK cell tumor infiltration and tumor killing in a PDAC 3D-spheroid model. Anti-human MARCO (anti-hMARCO) antibody targeting triggered the repolarization of tumor-associated macrophages and activated the inflammasome machinery, resulting in IL-18 production. This in turn enhanced T cell and NK cell functions. The targeting of MARCO thus remodels the TME and represents a rational approach to make immunotherapy more efficient in PDAC patients.

8.
Sci Rep ; 12(1): 12931, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902665

RESUMEN

Testosterone deficiency in men is associated with increased atherosclerosis burden and increased cardiovascular risk. In male mice, testosterone deficiency induced by castration increases atherosclerosis as well as mature B cell numbers in spleen. As B cells are potentially pro-atherogenic, we hypothesized that there may be a link between these effects. To address whether mature B cell deficiency alter the atherogenic response to castration, we studied B cell-deficient µMT and genotype control male mice on an atherosclerosis-prone Apoe-/- background that were castrated or sham-operated pre-pubertally and fed a high-fat diet between 8 and 16 weeks of age to accelerate atherosclerosis development. Genotype did not affect the effects of castration on body weight or weights of fat depots and there were no differences in serum cholesterol levels across the four groups. Atherosclerosis assessed by quantification of lesion area in serial sections of the aortic root was significantly increased by castration and by the µMT mutation, with no significant interaction between genotype and surgery. In conclusion, castration evokes a similar atherogenic response in B cell-deficient µMT and control mice. These data suggest that atherogenesis following castration is unrelated to the effects of androgens on mature B cell numbers.


Asunto(s)
Aterosclerosis , Animales , Aorta/patología , Apolipoproteínas E , Aterosclerosis/genética , Linfocitos B/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Orquiectomía , Testosterona/efectos adversos
9.
Cancer Res Commun ; 2(9): 1075-1088, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36922937

RESUMEN

The tumor suppressor protein p53 is mutated in close to 50% of human tumors and is dysregulated in many others, for instance by silencing or loss of p14ARF. Under steady-state conditions, the two E3 ligases MDM2/MDM4 interact with and inhibit the transcriptional activity of p53. Inhibition of p53-MDM2/4 interaction to reactivate p53 in tumors with wild-type (WT) p53 has therefore been considered a therapeutic strategy. Moreover, studies indicate that p53 reactivation may synergize with radiation and increase tumor immunogenicity. In vivo studies of most MDM2 inhibitors have utilized immunodeficient xenograft mouse models, preventing detailed studies of action of these molecules on the immune response. The mouse melanoma cell line B16-F10 carries functional, WT p53 but does not express the MDM2 regulator p19ARF. In this study, we tested a p53-MDM2 protein-protein interaction inhibitor, the small molecule Navtemadlin, which is currently being tested in phase II clinical trials. Using mass spectrometry-based proteomics and imaging flow cytometry, we identified specific protein expression patterns following Navtemadlin treatment of B16-F10 melanoma cells compared with their p53 CRISPR-inactivated control cells. In vitro, Navtemadlin induced a significant, p53-dependent, growth arrest but little apoptosis in B16-F10 cells. When combined with radiotherapy, Navtemadlin showed synergistic effects and increased apoptosis. In vivo, Navtemadlin treatment significantly reduced the growth of B16-F10 melanoma cells implanted in C57Bl/6 mice. Our data highlight the utility of a syngeneic B16-F10 p53+/+ mouse melanoma model for assessing existing and novel p53-MDM2/MDM4 inhibitors and in identifying new combination therapies that can efficiently eliminate tumors in vivo. Significance: The MDM2 inhibitor Navtemadlin arrests mouse tumor growth and potentiates radiotherapy. Our results support a threshold model for apoptosis induction that requires a high, prolonged p53 signaling for cancer cells to become apoptotic.


Asunto(s)
Antineoplásicos , Melanoma Experimental , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas c-mdm2 , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/metabolismo , Melanoma Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Ciclo Celular/metabolismo
10.
Autophagy ; 18(1): 204-222, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34313548

RESUMEN

CD38 is a cell surface receptor capable of generating calcium-mobilizing second messengers. It has been implicated in host defense and cancer biology, but signaling mechanisms downstream of CD38 remain unclear. Mutations in LRRK2 (leucine-rich repeat kinase 2) are the most common genetic cause of Parkinson disease; it is also a risk factor for Crohn disease, leprosy, and certain types of cancers. The pathogenesis of these diseases involves inflammation and macroautophagy/autophagy, processes both CD38 and LRRK2 are implicated in. Here, we mechanistically and functionally link CD38 and LRRK2 as upstream activators of TFEB (transcription factor EB), a host defense transcription factor and the master transcriptional regulator of the autophagy/lysosome machinery. In B-lymphocytes and macrophages, we show that CD38 and LRRK2 exist in a complex on the plasma membrane. Ligation of CD38 with the monoclonal antibody clone 90 results in internalization of the CD38-LRRK2 complex and its targeting to the endolysosomal system. This generates an NAADP-dependent calcium signal, which requires LRRK2 kinase activity, and results in the downstream activation of TFEB. lrrk2 KO macrophages accordingly have TFEB activation defects following CD38 or LPS stimulation and fail to switch to glycolytic metabolism after LPS treatment. In overexpression models, the pathogenic LRRK2G2019S mutant promotes hyperactivation of TFEB even in the absence of CD38, both by stabilizing TFEB and promoting its nuclear translocation via aberrant calcium signaling. In sum, we have identified a physiological CD38-LRRK2-TFEB signaling axis in immune cells. The common pathogenic mutant, LRRK2G2019S, appears to hijack this pathway.Abbreviations:ADPR: ADP-ribose; AMPK: AMP-activated protein kinase; BMDM: bone marrow-derived macrophage; cADPR: cyclic-ADP-ribose; COR: C-terminal of ROC; CTSD: cathepsin D; ECAR: extracellular acidification rate; EDTA: ethylenediaminetetraacetic acid; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GPN: Gly-Phe ß-naphthylamide; GSK3B/GSK3ß: glycogen synthase kinase 3 beta; GTP: guanosine triphosphate; KD: knockdown; LAMP1: lysosomal-associated membrane protein 1; LRR: leucine rich repeat; LRRK2: leucine rich repeat kinase 2; mAb: monoclonal antibody; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK/ERK: mitogen-activated protein kinase; MCOLN1: mucolipin 1; MFI: mean fluorescence intensity; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; NAADP: nicotinic acid adenine dinucleotide phosphate; NAD: nicotinamide adenine dinucleotide; NADP: nicotinamide adenine dinucleotide phosphate; PD: Parkinson disease; PPP3CB: protein phosphatase 3, catalytic subunit, beta isoform; q-RT-PCR: quantitative reverse transcription polymerase chain reaction; ROC: Ras of complex; siRNA: small interfering RNA; SQSTM1/p62: sequestome 1; TFEB: transcription factor EB; TPCN: two pore channel; TRPM2: transient receptor potential cation channel, subfamily M, member 2; ZKSCAN3: zinc finger with KRAB and SCAN domains 3.


Asunto(s)
Autofagia , Enfermedad de Parkinson , Adenosina Difosfato Ribosa/metabolismo , Anticuerpos Monoclonales , Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Calcio/metabolismo , Humanos , Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Lipopolisacáridos/metabolismo , Lisosomas/metabolismo , NADP/análogos & derivados , NADP/metabolismo , Enfermedad de Parkinson/metabolismo , Factores de Transcripción
11.
Nat Commun ; 12(1): 4127, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34226552

RESUMEN

Gliomas are brain tumors characterized by an immunosuppressive microenvironment. Immunostimulatory agonistic CD40 antibodies (αCD40) are in clinical development for solid tumors, but are yet to be evaluated for glioma. Here, we demonstrate that systemic delivery of αCD40 in preclinical glioma models induces the formation of tertiary lymphoid structures (TLS) in proximity of meningeal tissue. In treatment-naïve glioma patients, the presence of TLS correlates with increased T cell infiltration. However, systemic delivery of αCD40 induces hypofunctional T cells and impairs the response to immune checkpoint inhibitors in pre-clinical glioma models. This is associated with a systemic induction of suppressive CD11b+ B cells post-αCD40 treatment, which accumulate in the tumor microenvironment. Our work unveils the pleiotropic effects of αCD40 therapy in glioma and reveals that immunotherapies can modulate TLS formation in the brain, opening up for future opportunities to regulate the immune response.


Asunto(s)
Antígenos CD40/inmunología , Glioma/tratamiento farmacológico , Estructuras Linfoides Terciarias/inmunología , Animales , Antineoplásicos/farmacología , Linfocitos B/inmunología , Neoplasias Encefálicas/tratamiento farmacológico , Antígeno CD11b , Línea Celular Tumoral , Citocinas , Femenino , Expresión Génica , Glioma/patología , Humanos , Inmunoglobulina G/genética , Inmunoterapia , Masculino , Ratones , Ratones Endogámicos C57BL , Células Mieloides , Fenotipo , Linfocitos T , Microambiente Tumoral/inmunología
12.
Autophagy ; 17(11): 3577-3591, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33535890

RESUMEN

Scavenger receptors are pattern recognition receptors that recognize both foreign and self-ligands, and initiate different mechanisms of cellular activation, often as co-receptors. The function of scavenger receptor CD36 in the immune system has mostly been studied in macrophages but it is also highly expressed by innate type B cells where its function is less explored. Here we report that CD36 is involved in macro-autophagy/autophagy in B cells, and in its absence, the humoral immune response is impaired. We found that CD36-deficient B cells exhibit a significantly reduced plasma cell formation, proliferation, mitochondrial mobilization and oxidative phosphorylation. These changes were accompanied by impaired initiation of autophagy, and we found that CD36 regulated autophagy and colocalized with autophagosome membrane protein MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3). When we investigated T-cell-dependent immune responses, we found that mice with CD36 deficiency, specifically in B cells, exhibited attenuated germinal center responses, class switching, and antibody production as well as autophagosome formation. These findings establish a critical role for CD36 in B cell responses and may also contribute to our understanding of CD36-mediated autophagy in other cells as well as in B cell lymphomas that have been shown to express the receptor.Abbreviations: AICDA/AID: activation-induced cytidine deaminase; ATG5: autophagy related 5; ATP: adenosine triphosphate; BCR: B-cell receptor; CPG: unmethylated cytosine-guanosine; CQ: chloroquine; DC: dendritic cells; FOB: follicular B cells; GC: germinal center; Ig: immunoglobulin; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MFI: mean fluorescence intensity; MZB: marginal zone B cells; NP-CGG: 4-hydroxy-3-nitrophenylacetyl-chicken gamma globulin; OCR: oxygen consumption rate; oxLDL: oxidized low-density lipoprotein; PC: plasma cells; Rapa: rapamycin; SQSTM1/p62: sequestosome 1; SRBC: sheep red blood cells; Tfh: follicular helper T cells; TLR: toll-like receptor.


Asunto(s)
Autofagia , Linfocitos B/fisiología , Antígenos CD36/fisiología , Inmunidad Humoral , Proteínas Asociadas a Microtúbulos/fisiología , Animales , Autofagosomas/metabolismo , Autofagosomas/fisiología , Autofagia/fisiología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Antígenos CD36/metabolismo , Diferenciación Celular , Proliferación Celular , Humanos , Cambio de Clase de Inmunoglobulina , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Células Plasmáticas/fisiología , Linfocitos T/inmunología , Linfocitos T/fisiología
13.
Immunol Rev ; 299(1): 93-107, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33438287

RESUMEN

Invariant natural killer T (iNKT) cells mediate rapid immune responses which bridge the gap between innate and adaptive responses to pathogens while also providing key regulation to maintain immune homeostasis. Both types of important iNKT immune responses are mediated through interactions with innate and adaptive B cells. As such, iNKT cells sit at the decision-making fulcrum between regulating inflammatory or autoreactive B cells and supporting protective or regulatory B cell populations. iNKT cells interpret the signals in their environment to set the tone for subsequent adaptive responses, with outcomes ranging from getting licensed to maintain homeostasis as an iNKT regulatory cell (iNKTreg ) or being activated to become an iNKT follicular helper (iNKTFH ) cell supporting pathogen-specific effector B cells. Here we review iNKT and B cell cooperation across the spectrum of immune outcomes, including during allergy and autoimmune disease, tumor surveillance and immunotherapy, or pathogen defense and vaccine responses. Because of their key role as influencers, iNKT cells provide a valuable target for therapeutic interventions. Understanding the nature of the interactions between iNKT and B cells will enable the development of clinical interventions to strategically target regulatory iNKT and B cell populations or inflammatory ones, depending on the circumstance.


Asunto(s)
Linfocitos B Reguladores , Células T Asesinas Naturales , Inmunidad Innata , Inmunoterapia , Activación de Linfocitos
14.
Immunity ; 54(2): 259-275.e7, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33382972

RESUMEN

The study of human macrophages and their ontogeny is an important unresolved issue. Here, we use a humanized mouse model expressing human cytokines to dissect the development of lung macrophages from human hematopoiesis in vivo. Human CD34+ hematopoietic stem and progenitor cells (HSPCs) generated three macrophage populations, occupying separate anatomical niches in the lung. Intravascular cell labeling, cell transplantation, and fate-mapping studies established that classical CD14+ blood monocytes derived from HSPCs migrated into lung tissue and gave rise to human interstitial and alveolar macrophages. In contrast, non-classical CD16+ blood monocytes preferentially generated macrophages resident in the lung vasculature (pulmonary intravascular macrophages). Finally, single-cell RNA sequencing defined intermediate differentiation stages in human lung macrophage development from blood monocytes. This study identifies distinct developmental pathways from circulating monocytes to lung macrophages and reveals how cellular origin contributes to human macrophage identity, diversity, and localization in vivo.


Asunto(s)
Células Madre Hematopoyéticas/inmunología , Pulmón/inmunología , Macrófagos Alveolares/inmunología , Monocitos/inmunología , Antígenos CD34/metabolismo , Biodiversidad , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Sangre Fetal/citología , Humanos , Receptores de Lipopolisacáridos/metabolismo , Pulmón/irrigación sanguínea , Receptores de IgG/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Nicho de Células Madre
15.
Cancer Res ; 81(4): 956-967, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33293426

RESUMEN

The progression and metastatic capacity of solid tumors are strongly influenced by immune cells in the tumor microenvironment. In non-small cell lung cancer (NSCLC), accumulation of anti-inflammatory tumor-associated macrophages (TAM) is associated with worse clinical outcome and resistance to therapy. Here we investigated the immune landscape of NSCLC in the presence of protumoral TAMs expressing the macrophage receptor with collagenous structure (MARCO). MARCO-expressing TAM numbers correlated with increased occurrence of regulatory T cells and effector T cells and decreased natural killer (NK) cells in these tumors. Furthermore, transcriptomic data from the tumors uncovered a correlation between MARCO expression and the anti-inflammatory cytokine IL37. In vitro studies subsequently showed that lung cancer cells polarized macrophages to express MARCO and gain an immune-suppressive phenotype through the release of IL37. MARCO-expressing TAMs blocked cytotoxic T-cell and NK-cell activation, inhibiting their proliferation, cytokine production, and tumor killing capacity. Mechanistically, MARCO+ macrophages enhanced regulatory T (Treg) cell proliferation and IL10 production and diminished CD8 T-cell activities. Targeting MARCO or IL37 receptor (IL37R) by antibody or CRISPR knockout of IL37 in lung cancer cell lines repolarized TAMs, resulting in recovered cytolytic activity and antitumoral capacity of NK cells and T cells and downmodulated Treg cell activities. In summary, our data demonstrate a novel immune therapeutic approach targeting human TAMs immune suppression of NK- and T-cell antitumor activities. SIGNIFICANCE: This study defines tumor-derived IL37 and the macrophage scavenger receptor MARCO as potential therapeutic targets to remodel the immune-suppressive microenvironment in patients with lung cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/4/956/F1.large.jpg.


Asunto(s)
Receptores Inmunológicos , Receptores de Interleucina-1 , Linfocitos T Citotóxicos/inmunología , Linfocitos T Reguladores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Células Cultivadas , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Tolerancia Inmunológica/genética , Tolerancia Inmunológica/inmunología , Inmunoterapia/métodos , Interleucina-1/genética , Interleucina-1/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Ratones , Ratones Noqueados , Terapia Molecular Dirigida/métodos , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Receptores de Interleucina-1/antagonistas & inhibidores , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/inmunología , Linfocitos T Reguladores/patología , Escape del Tumor/inmunología , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología
16.
Proc Natl Acad Sci U S A ; 117(50): 32005-32016, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33229588

RESUMEN

Tumor-associated macrophages (TAMs) can have protumor properties, including suppressing immune responses, promoting vascularization and, consequently, augmenting tumor progression. To stop TAM-mediated immunosuppression, we use a novel treatment by injecting antibodies specific for scavenger receptor MARCO, which is expressed on a specific subpopulation of TAMs in the tumor. We now report the location of this TAM as well as the pleiotropic mechanism of action of anti-MARCO antibody treatment on tumor progression and further show that this is potentially relevant to humans. Using specific targeting, we observed decreased tumor vascularization, a switch in the metabolic program of MARCO-expressing macrophages, and activation of natural killer (NK) cell killing through TNF-related apoptosis-inducing ligand (TRAIL). This latter activity reverses the effect of melanoma cell-conditioned macrophages in blocking NK activation and synergizes with T cell-directed immunotherapy, such as antibodies to PD-1 or PD-L1, to enhance tumor killing. Our study thus reveals an approach to targeting the immunosuppressive tumor microenvironment with monoclonal antibodies to enhance NK cell activation and NK cell-mediated killing. This can complement existing T cell-directed immunotherapy, providing a promising approach to combinatorial immunotherapy for cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Células Asesinas Naturales/inmunología , Melanoma/tratamiento farmacológico , Receptores Inmunológicos/antagonistas & inhibidores , Macrófagos Asociados a Tumores/efectos de los fármacos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Células Asesinas Naturales/metabolismo , Masculino , Melanoma/inmunología , Melanoma/patología , Ratones , Ratones Noqueados , Cultivo Primario de Células , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo
17.
Blood Adv ; 4(11): 2439-2450, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32492159

RESUMEN

Pharmacological inhibitors of Bruton tyrosine kinase (BTK) have revolutionized treatment of B-lymphocyte malignancies and show great promise for dampening autoimmunity. The predominant BTK inhibitors tether irreversibly by covalently binding to cysteine 481 in the BTK catalytic domain. Substitution of cysteine 481 for serine (C481S) is the most common mechanism for acquired drug resistance. We generated a novel C481S knock-in mouse model and, using a battery of tests, no overt B-lymphocyte phenotype was found. B lymphocytes from C481S animals were resistant to irreversible, but sensitive to reversible, BTK inhibitors. In contrast, irreversible inhibitors equally impaired T-lymphocyte activation in mice, mimicking the effect of treatment in patients. This demonstrates that T-lymphocyte blockage is independent of BTK. We suggest that the C481S knock-in mouse can serve as a useful tool for the study of BTK-independent effects of irreversible inhibitors, allowing for the identification of novel therapeutic targets and pinpointing potential side effects.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Linfocitos B , Inhibidores de Proteínas Quinasas , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , Inhibidores de Proteínas Quinasas/farmacología
18.
Sensors (Basel) ; 19(15)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374817

RESUMEN

The durability of metal-based constructions, especially those containing reinforced concrete, is mainly limited by corrosion processes. Diamond-like carbon (DLC)-coated silicon (Si) wafers provide a chemically inert and mechanically robust sensing interface for application in aggressive environments. In this study, iron-sensitive dyes, i.e., 2,3-dihydroxypyridine (DHP) and 1,2-dihydroxybenzol (DHB), were coated onto DLC-modified Si wafers for evaluating the potential of detecting corrosion processes via evanescent field absorption spectroscopy using Fourier-transform infrared spectroscopy. The obtained IR spectra reveal discernible changes of the dye layer after exposure to iron solutions, which indicates that indeed corrosion processes may be studied at molecular level detail.

19.
J Immunol ; 203(4): 825-834, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31292216

RESUMEN

Extracellular vesicles (EV) are candidates for cancer immunotherapy because of their capacity to stimulate tumor-specific activity in vivo. However, clinical trials using peptide-loaded autologous EVs have so far only showed moderate T cell responses, suggesting a need for optimization of EV-induced immunity in humans. We previously demonstrated that induction of Ag-specific CD8+ T cells and antitumor responses to whole Ag were independent of MHC class I on EVs and hypothesized that multiple injections of allogeneic EVs could potentiate Ag-specific responses. In this study, we show that the allogeneic EV from mouse bone marrow-derived dendritic cells enhances Ag-specific CD8+ T cell, follicular helper T cell, and Ag-specific Ab responses. EV-injected mice demonstrated Ag-specific memory after 4 mo, with the highest Ab avidity in mice receiving double allogeneic EV injections. Reduced B16mOVA melanoma tumor growth was shown in all EV-injected groups. Our findings support the application of allogeneic EVs for therapeutic use in clinical studies in which an adaptive immune response is desired.


Asunto(s)
Vesículas Extracelulares/trasplante , Memoria Inmunológica/inmunología , Inmunoterapia/métodos , Melanoma Experimental/inmunología , Aloinjertos , Animales , Células de la Médula Ósea/inmunología , Células Dendríticas/inmunología , Vesículas Extracelulares/inmunología , Isoinjertos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
20.
J Immunol ; 202(5): 1510-1520, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30683698

RESUMEN

Macrophages exist as innate immune subsets that exhibit phenotypic heterogeneity and functional plasticity. Their phenotypes are dictated by inputs from the tissue microenvironment. G-protein-coupled receptors are essential in transducing signals from the microenvironment, and heterotrimeric Gα signaling links these receptors to downstream effectors. Several Gαi-coupled G-protein-coupled receptors have been implicated in macrophage polarization. In this study, we use genetically modified mice to investigate the role of Gαi2 on inflammasome activity and macrophage polarization. We report that Gαi2 in murine bone marrow-derived macrophages (BMDMs) regulates IL-1ß release after activation of the NLRP3, AIM2, and NLRC4 inflammasomes. We show this regulation stems from the biased polarity of Gαi2 deficient (Gnai2 -/-) and RGS-insensitive Gαi2 (Gnai2 G184S/G184S) BMDMs. We determined that although Gnai2 G184S/G184S BMDMs (excess Gαi2 signaling) have a tendency toward classically activated proinflammatory (M1) phenotype, Gnai2-/- BMDMs (Gαi2 deficient) are biased toward alternatively activated anti-inflammatory (M2) phenotype. Finally, we find that Gαi2-deficient macrophages have increased Akt activation and IFN-ß production but defects in ERK1/2 and STAT3 activation after LPS stimulation. Gαi2-deficient macrophages also exhibit increased STAT6 activation after IL-4 stimulation. In summary, our data indicates that excess Gαi2 signaling promotes an M1 macrophage phenotype, whereas Gαi2 signaling deficiency promotes an M2 phenotype. Understanding Gαi2-mediated effects on macrophage polarization may bring to light insights regarding disease pathogenesis and the reprogramming of macrophages for the development of novel therapeutics.


Asunto(s)
Citocinas/biosíntesis , Subunidad alfa de la Proteína de Unión al GTP Gi2/inmunología , Inflamasomas/inmunología , Macrófagos/inmunología , Transducción de Señal/inmunología , Animales , Células Cultivadas , Subunidad alfa de la Proteína de Unión al GTP Gi2/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA