Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell Rep ; 34(10): 108817, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33691104

RESUMEN

Primary cilia play a pivotal role in signal transduction and development and are known to serve as signaling hubs. Recent studies have shown that primary cilium dysfunction influences adipogenesis, but the mechanisms are unclear. Here, we show that mesenchymal progenitors C3H10T1/2 depleted of trichoplein, a key regulator of cilium formation, have significantly longer cilia than control cells and fail to differentiate into adipocytes. Mechanistically, the elongated cilia prevent caveolin-1- and/or GM3-positive lipid rafts from being assembled around the ciliary base where insulin receptor proteins accumulate, thereby inhibiting the insulin-Akt signaling. We further generate trichoplein knockout mice, in which adipogenic progenitors display elongated cilia and impair the lipid raft dynamics. The knockout mice on an extended high-fat diet exhibit reduced body fat and smaller adipocytes than wild-type (WT) mice. Overall, our results suggest a role for primary cilia in regulating adipogenic signal transduction via control of the lipid raft dynamics around cilia.


Asunto(s)
Caveolina 1/metabolismo , Cilios/metabolismo , Microdominios de Membrana/metabolismo , Adipogénesis/efectos de los fármacos , Animales , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Metabolismo Energético , Insulina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Obesidad/patología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transducción de Señal
2.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825105

RESUMEN

Cilia are antenna-like structures present in many vertebrate cells. These organelles detect extracellular cues, transduce signals into the cell, and play an essential role in ensuring correct cell proliferation, migration, and differentiation in a spatiotemporal manner. Not surprisingly, dysregulation of cilia can cause various diseases, including cancer and ciliopathies, which are complex disorders caused by mutations in genes regulating ciliary function. The structure and function of cilia are dynamically regulated through various mechanisms, among which E3 ubiquitin ligases and deubiquitinases play crucial roles. These enzymes regulate the degradation and stabilization of ciliary proteins through the ubiquitin-proteasome system. In this review, we briefly highlight the role of cilia in ciliopathy and cancer; describe the roles of E3 ubiquitin ligases and deubiquitinases in ciliogenesis, ciliopathy, and cancer; and highlight some of the E3 ubiquitin ligases and deubiquitinases that are potential therapeutic targets for these disorders.


Asunto(s)
Ciliopatías/tratamiento farmacológico , Enzimas Desubicuitinizantes/metabolismo , Neoplasias/tratamiento farmacológico , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ciliopatías/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Neoplasias/metabolismo , Ubiquitinación/efectos de los fármacos
3.
Adv Sci (Weinh) ; 6(1): 1801138, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30643718

RESUMEN

Primary cilia detect extracellular cues and transduce these signals into cells to regulate proliferation, migration, and differentiation. Here, the function of primary cilia as signaling hubs of growth factors and morphogens is in focus. First, the molecular mechanisms regulating the assembly and disassembly of primary cilia are described. Then, the role of primary cilia in mediating growth factor and morphogen signaling to maintain human health and the potential mechanisms by which defects in these pathways contribute to human diseases, such as ciliopathy, obesity, and cancer are described. Furthermore, a novel signaling pathway by which certain growth factors stimulate cell proliferation through suppression of ciliogenesis is also described, suggesting novel therapeutic targets in cancer.

4.
Cancer Sci ; 109(9): 2632-2640, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29949679

RESUMEN

Tetraploidy, a condition in which a cell has four homologous sets of chromosomes, is often seen as a natural physiological condition but is also frequently seen in pathophysiological conditions such as cancer. Tetraploidy facilitates chromosomal instability (CIN), which is an elevated level of chromosomal loss and gain that can cause production of a wide variety of aneuploid cells that carry structural and numerical aberrations of chromosomes. The resultant genomic heterogeneity supposedly expedites karyotypic evolution that confers oncogenic potential in spite of the reduced cellular fitness caused by aneuploidy. Recent studies suggest that tetraploidy might also be associated with aging; mice with mutations in an intermediate filament protein have revealed that these tetraploidy-prone mice exhibit tissue disorders associated with aging. Cellular senescence and its accompanying senescence-associated secretory phenotype have now emerged as critical factors that link tetraploidy and tetraploidy-induced CIN with cancer, and possibly with aging. Here, we review recent findings about how tetraploidy is related to cancer and possibly to aging, and discuss underlying mechanisms of the relationship, as well as how we can exploit the properties of cells exhibiting tetraploidy-induced CIN to control these pathological conditions.


Asunto(s)
Envejecimiento/genética , Senescencia Celular/genética , Inestabilidad Cromosómica/genética , Neoplasias/genética , Tetraploidía , Animales , Humanos , Ratones
5.
Nat Commun ; 9(1): 758, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29472535

RESUMEN

Ciliogenesis is generally inhibited in dividing cells, however, it has been unclear which signaling cascades regulate the phenomenon. Here, we report that epidermal growth factor receptor (EGFR) kinase suppresses ciliogenesis by directly phosphorylating the deubiquitinase USP8 on Tyr-717 and Tyr-810 in RPE1 cells. These phosphorylations elevate the deubiquitinase activity, which then stabilizes the trichoplein-Aurora A pathway, an inhibitory mechanism of ciliogenesis. EGFR knockdown and serum starvation result in ciliogenesis through downregulation of the USP8-trichoplein-Aurora A signal. Moreover, primary cilia abrogation, which is induced upon IFT20 or Cep164 depletion, ameliorates the cell cycle arrest of EGFR knockdown cells. The present data reveal that the EGFR-USP8-trichoplein-Aurora A axis is a critical signaling cascade that restricts ciliogenesis in dividing cells, and functions to facilitate cell proliferation. We further show that usp8 knockout zebrafish develops ciliopathy-related phenotypes including cystic kidney, suggesting that USP8 is a regulator of ciliogenesis in vertebrates.


Asunto(s)
Cilios/metabolismo , Cilios/ultraestructura , Endopeptidasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Receptores ErbB/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Animales Modificados Genéticamente , Aurora Quinasa A/metabolismo , Proteínas Portadoras/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular , Ciliopatías/genética , Ciliopatías/metabolismo , Ciliopatías/patología , Medio de Cultivo Libre de Suero , Enzimas Desubicuitinizantes/deficiencia , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Modelos Animales de Enfermedad , Endopeptidasas/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Técnicas de Inactivación de Genes , Humanos , Fosforilación , Proteolisis , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/ultraestructura , Transducción de Señal , Ubiquitina Tiolesterasa/química , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Sci Signal ; 10(472)2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28351953

RESUMEN

Sphingosine kinase 1 (SphK1) promotes cell proliferation and survival, and its abundance is often increased in tumors. SphK1 produces the signaling lipid sphingosine 1-phosphate (S1P), which activates signaling cascades downstream five G protein-coupled receptors (S1P1-5) to modulate vascular and immune system function and promote proliferation. We identified a new function of the SphK1-S1P pathway specifically in the control of mitosis. SphK1 depletion in HeLa cells caused prometaphase arrest, whereas its overexpression or activation accelerated mitosis. Increasing the abundance of S1P promoted mitotic progression, overrode the spindle assembly checkpoint (SAC), and led to chromosome segregation defects. S1P was secreted through the transporter SPNS2 and stimulated mitosis by binding to and activating S1P5 on the extracellular side, which then activated the intracellular phosphatidylinositol 3-kinase (PI3K)-AKT pathway. Knockdown of S1P5 prevented the S1P-induced spindle defect phenotype. RNA interference assays revealed that the mitotic kinase Polo-like kinase 1 (PLK1) was an important effector of S1P-S1P5 signaling-induced mitosis in HeLa cells. Our findings identify an extracellular signal and the downstream pathway that promotes mitotic progression and may indicate potential therapeutic targets to inhibit the proliferation of cancer cells.


Asunto(s)
Segregación Cromosómica/efectos de los fármacos , Lisofosfolípidos/farmacología , Mitosis/efectos de los fármacos , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal/efectos de los fármacos , Esfingosina/análogos & derivados , Animales , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Células Cultivadas , Células HeLa , Humanos , Ratones Noqueados , Microscopía Confocal , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Receptores de Lisoesfingolípidos/genética , Esfingosina/farmacología , Imagen de Lapso de Tiempo/métodos , Quinasa Tipo Polo 1
7.
Biochem Biophys Res Commun ; 478(3): 1323-9, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27565725

RESUMEN

Desmin is a type III intermediate filament (IF) component protein expressed specifically in muscular cells. Desmin is phosphorylated by Aurora-B and Rho-kinase specifically at the cleavage furrow from anaphase to telophase. The disturbance of this phosphorylation results in the formation of unusual long bridge-like IF structures (IF-bridge) between two post-mitotic (daughter) cells. Here, we report that desmin also serves as an excellent substrate for the other type of mitotic kinase, Cdk1. Desmin phosphorylation by Cdk1 loses its ability to form IFs in vitro. We have identified Ser6, Ser27, and Ser31 on murine desmin as phosphorylation sites for Cdk1. Using a site- and phosphorylation-state-specific antibody for Ser31 on desmin, we have demonstrated that Cdk1 phosphorylates desmin in entire cytoplasm from prometaphase to metaphase. Desmin mutations at Cdk1 sites exhibit IF-bridge phenotype, the frequency of which is significantly increased by the addition of Aurora-B and Rho-kinase site mutations to Cdk1 site mutations. In addition, Cdk1-induced desmin phosphorylation is detected in mitotic muscular cells of murine embryonic/newborn muscles and human rhabdomyosarcoma specimens. Therefore, Cdk1-induced desmin phosphorylation is required for efficient separation of desmin-IFs and generally detected in muscular mitotic cells in vivo.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Desmina/metabolismo , Filamentos Intermedios/metabolismo , Mitosis , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Rabdomiosarcoma/metabolismo , Animales , Animales Recién Nacidos , Humanos , Ratones , Proteínas Mutantes/metabolismo , Fosforilación , Fosfoserina/metabolismo , Rabdomiosarcoma/patología
8.
J Cell Biol ; 212(4): 409-23, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26880200

RESUMEN

Primary cilia protrude from the surface of quiescent cells and disassemble at cell cycle reentry. We previously showed that ciliary reassembly is suppressed by trichoplein-mediated Aurora A activation pathway in growing cells. Here, we report that Ndel1, a well-known modulator of dynein activity, localizes at the subdistal appendage of the mother centriole, which nucleates a primary cilium. In the presence of serum, Ndel1 depletion reduces trichoplein at the mother centriole and induces unscheduled primary cilia formation, which is reverted by forced trichoplein expression or coknockdown of KCTD17 (an E3 ligase component protein for trichoplein). Serum starvation induced transient Ndel1 degradation, subsequent to the disappearance of trichoplein at the mother centriole. Forced expression of Ndel1 suppressed trichoplein degradation and axonemal microtubule extension during ciliogenesis, similar to trichoplein induction or KCTD17 knockdown. Most importantly, the proportion of ciliated and quiescent cells was increased in the kidney tubular epithelia of newborn Ndel1-hypomorphic mice. Thus, Ndel1 acts as a novel upstream regulator of the trichoplein-Aurora A pathway to inhibit primary cilia assembly.


Asunto(s)
Aurora Quinasa A/metabolismo , Proteínas Portadoras/metabolismo , Proliferación Celular , Células Epiteliales/enzimología , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Recién Nacidos , Aurora Quinasa A/genética , Proteínas Portadoras/genética , Puntos de Control del Ciclo Celular , Centriolos/enzimología , Cilios/enzimología , Genotipo , Células HeLa , Humanos , Túbulos Renales/citología , Túbulos Renales/enzimología , Ratones , Ratones Noqueados , Microtúbulos/enzimología , Fenotipo , Estabilidad Proteica , Proteolisis , Interferencia de ARN , Células 3T3 Swiss , Factores de Tiempo , Transfección
9.
Methods Enzymol ; 568: 85-111, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26795468

RESUMEN

Intermediate filaments (IFs) form one of the major cytoskeletal systems in the cytoplasm or beneath the nuclear membrane. Accumulating data have suggested that IF protein phosphorylation dramatically changes IF structure/dynamics in cells. For the production of an antibody recognizing site-specific protein phosphorylation (a site- and phosphorylation state-specific antibody), we first employed a strategy to immunize animals with an in vitro-phosphorylated polypeptide or a phosphopeptide (corresponding to a phosphorylated residue and its surrounding sequence of amino acids), instead of a phosphorylated protein. Our established methodology not only improves the chance of obtaining a phospho-specific antibody but also has the advantage that one can predesign a targeted phosphorylation site. It is now applied to the production of an antibody recognizing other types of site-specific posttranslational modification, such as acetylation or methylation. The use of such an antibody in immunocytochemistry enables us to analyze spatiotemporal distribution of site-specific IF protein phosphorylation. The antibody is of great use to identify a protein kinase responsible for in vivo IF protein phosphorylation and to monitor intracellular kinase activities through IF protein phosphorylation. Here, we present an overview of our methodology and describe stepwise approaches for the antibody characterization. We also provide some examples of analyses for IF protein phosphorylation involved in mitosis and signal transduction.


Asunto(s)
Anticuerpos/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Animales , Ensayo de Inmunoadsorción Enzimática , Humanos , Sondas Moleculares/metabolismo , Fosforilación , Vimentina/metabolismo
10.
PLoS One ; 10(7): e0133399, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26186445

RESUMEN

Vimentin is a newly recognized target for corneal fibrosis. Using primary rabbit corneal fibroblasts and myofibroblasts we show that myofibroblasts, unlike fibroblasts, display impaired cell spreading and cell polarization, which is associated with increased levels of soluble serine-38 phosphorylated vimentin (pSer38Vim). This pSer38Vim isoform is inefficiently incorporated into growing vimentin intermediate filaments (IFs) of myofibroblasts during cell spreading, and as a result, myofibroblasts maintain higher soluble pSer38Vim levels compared to fibroblasts. Moreover, the soluble vimentin-targeting small molecule and fibrotic inhibitor withaferin A (WFA) causes a potent blockade of cell spreading selectively in myofibroblasts by targeting soluble pSer38Vim for hyperphosphorylation. WFA treatment does not induce vimentin hyperphosphorylation in fibroblasts. This hyperphosphorylated pSer38Vim species in WFA-treated myofibroblasts becomes complexed with adaptor protein filamin A (FlnA), and these complexes appear as short squiggles when displaced from focal adhesions. The extracellular-signal regulated kinase (ERK) is also phosphorylated (pERK) in response to WFA, but surprisingly, pERK does not enter the nucleus but remains bound to pSer38Vim in cytoplasmic complexes. Using a model of corneal alkali injury, we show that fibrotic corneas of wild type mice possess high levels of pERK, whereas injured corneas of vimentin-deficient (Vim KO) mice that heal with reduced fibrosis have highly reduced pERK expression. Finally, WFA treatment causes a decrease in pERK and pSer38Vim expression in healing corneas of wild type mice. Taken together, these findings identify a hereto-unappreciated role for pSer38Vim as an important determinant of myofibroblast sensitivity to WFA.


Asunto(s)
Enfermedades de la Córnea/metabolismo , Enfermedades de la Córnea/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Vimentina/metabolismo , Witanólidos/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibrosis , Filaminas/metabolismo , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Filamentos Intermedios/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Noqueados , Miofibroblastos/efectos de los fármacos , Miosinas/metabolismo , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Conejos , Solubilidad
11.
Cell Struct Funct ; 40(1): 43-50, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25748360

RESUMEN

Checkpoint kinase 1 (Chk1) is a conserved protein kinase central to the cell-cycle checkpoint during DNA damage response (DDR). Until recently, ATR, a protein kinase activated in response to DNA damage or stalled replication, has been considered as the sole regulator of Chk1. Recent progress, however, has led to the identification of additional protein kinases involved in Chk1 phosphorylation, affecting the subcellular localization and binding partners of Chk1. In fact, spatio-temporal regulation of Chk1 is of critical importance not only in the DDR but also in normal cell-cycle progression. In due course, many potent inhibitors targeted to Chk1 have been developed as anticancer agents and some of these inhibitors are currently in clinical trials. In this review, we summarize the current knowledge of Chk1 regulation by phosphorylation.


Asunto(s)
Proteínas Quinasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Fosforilación , Proteínas Quinasas/química , Serina/metabolismo
12.
Cilia ; 4: 12, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26719793

RESUMEN

Primary cilia, microtubule-based sensory structures, orchestrate various critical signals during development and tissue homeostasis. In view of the rising interest into the reciprocal link between ciliogenesis and cell cycle, we discuss here several recent advances to understand the molecular link between the individual step of ciliogenesis and cell cycle control. At the onset of ciliogenesis (the transition from centrosome to basal body), distal appendage proteins have been established as components indispensable for the docking of vesicles at the mother centriole. In the initial step of axonemal extension, CP110, Ofd1, and trichoplein, key negative regulators of ciliogenesis, are found to be removed by a kinase-dependent mechanism, autophagy, and ubiquitin-proteasome system, respectively. Of note, their disposal functions as a restriction point to decide that the axonemal nucleation and extension begin. In the elongation step, Nde1, a negative regulator of ciliary length, is revealed to be ubiquitylated and degraded by CDK5-SCF(Fbw7) in a cell cycle-dependent manner. With regard to ciliary length control, it has been uncovered in flagellar shortening of Chlamydomonas that cilia itself transmit a ciliary length signal to cytoplasm. At the ciliary resorption step upon cell cycle re-entry, cilia are found to be disassembled not only by Aurora A-HDAC6 pathway but also by Nek2-Kif24 and Plk1-Kif2A pathways through their microtubule-depolymerizing activity. On the other hand, it is becoming evident that the presence of primary cilia itself functions as a structural checkpoint for cell cycle re-entry. These data suggest that ciliogenesis and cell cycle intimately link each other, and further elucidation of these mechanisms will contribute to understanding the pathology of cilia-related disease including cancer and discovering targets of therapeutic interventions.

13.
Nat Commun ; 4: 1882, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23695676

RESUMEN

Polo-like kinase 1 (Plk1) controls multiple aspects of mitosis and is activated through its phosphorylation at Thr210. Here we identify Ser99 on Plk1 as a novel mitosis-specific phosphorylation site, which operates independently of Plk1-Thr210 phosphorylation. Plk1-Ser99 phosphorylation creates a docking site for 14-3-3γ, and this interaction stimulates the catalytic activity of Plk1. Knockdown of 14-3-3γ or replacement of wild-type (WT) Plk1 by a Ser99-phospho-blocking mutant leads to a prometaphase/metaphase-like arrest due to the activation of the spindle assembly checkpoint. Inhibition of phosphatidylinositol 3-kinase (PI3K) and Akt significantly reduces the level of Plk1-Ser99 phosphorylation and delays metaphase to anaphase transition. Plk1-Ser99 phosphorylation requires not only Akt activity but also protein(s) associated with Plk1 in a mitosis-specific manner. Therefore, mitotic Plk1 activity is regulated not only by Plk1-Thr210 phosphorylation, but also by Plk1 binding to 14-3-3γ following Plk1-Ser99 phosphorylation downstream of the PI3K-Akt signalling pathway. This novel Plk1 activation pathway controls proper progression from metaphase to anaphase.


Asunto(s)
Proteínas 14-3-3/metabolismo , Anafase , Proteínas de Ciclo Celular/metabolismo , Metafase , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoserina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Biocatálisis , Caenorhabditis elegans , Drosophila melanogaster , Activación Enzimática , Células HeLa , Humanos , Puntos de Control de la Fase M del Ciclo Celular , Modelos Biológicos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Quinasa Tipo Polo 1
14.
Mol Biol Cell ; 23(8): 1582-92, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22357623

RESUMEN

The ataxia telangiectasia mutated- and rad3-related kinase (ATR)/Chk1 pathway is a sentinel of cell cycle progression. On the other hand, the Ras/mitogen-activated protein kinase/90-kDa ribosomal S6 kinase (p90 RSK) pathway is a central node in cell signaling downstream of growth factors. These pathways are closely correlated in cell proliferation, but their interaction is largely unknown. Here we show that Chk1 is phosphorylated predominantly at Ser-280 and translocated from cytoplasm to nucleus in response to serum stimulation. Nonphosphorylated Chk1-Ser-280 mutation attenuates nuclear Chk1 accumulation, whereas the phosphomimic mutation has a reverse effect on the localization. Treatment with p90 RSK inhibitor impairs Chk1 phosphorylation at Ser-280 and accumulation at the nucleus after serum stimulation, whereas these two phenomena are induced by the expression of the constitutively active mutant of p90 RSK in serum-starved cells. In vitro analyses indicate that p90 RSK stoichiometrically phosphorylates Ser-280 on Chk1. Together with Chk1 phosphorylation at Ser-345 by ATR and its autophosphorylation at Ser-296, which are critical for checkpoint signaling, Chk1-Ser-280 phosphorylation is elevated in a p90 RSK-dependent manner after UV irradiation. In addition, Chk1 phosphorylation at Ser-345 and Ser-296 after UV irradiation is also attenuated by the treatment with p90 RSK inhibitor or by Ser-280 mutation to Ala. These results suggest that p90 RSK facilitates nuclear Chk1 accumulation through Chk1-Ser-280 phosphorylation and that this pathway plays an important role in the preparation for monitoring genetic stability during cell proliferation.


Asunto(s)
Núcleo Celular/metabolismo , Proliferación Celular , Inestabilidad Genómica , Proteínas Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Citoplasma/metabolismo , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética
15.
J Cell Sci ; 124(Pt 13): 2113-9, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21628425

RESUMEN

Chk1 inhibits the premature activation of the cyclin-B1-Cdk1. However, it remains controversial whether Chk1 inhibits Cdk1 in the centrosome or in the nucleus before the G2-M transition. In this study, we examined the specificity of the mouse monoclonal anti-Chk1 antibody DCS-310, with which the centrosome was stained. Conditional Chk1 knockout in mouse embryonic fibroblasts reduced nuclear but not centrosomal staining with DCS-310. In Chk1(+/myc) human colon adenocarcinoma (DLD-1) cells, Chk1 was detected in the nucleus but not in the centrosome using an anti-Myc antibody. Through the combination of protein array and RNAi technologies, we identified Ccdc-151 as a protein that crossreacted with DCS-310 on the centrosome. Mitotic entry was delayed by expression of the Chk1 mutant that localized in the nucleus, although forced immobilization of Chk1 to the centrosome had little impact on the timing of mitotic entry. These results suggest that nuclear but not centrosomal Chk1 contributes to correct timing of mitotic entry.


Asunto(s)
Núcleo Celular/metabolismo , Mitosis , Proteínas Quinasas/biosíntesis , Animales , Proteína Quinasa CDC2/metabolismo , Ciclo Celular , Línea Celular Tumoral , Centrosoma/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Ciclina B1/genética , Ciclina B1/metabolismo , Humanos , Ratones , Ratones Noqueados , Mutación , Proteínas Quinasas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , ARN Interferente Pequeño
16.
J Biol Chem ; 285(10): 7657-69, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20048155

RESUMEN

Gliosis is a biological process that occurs during injury repair in the central nervous system and is characterized by the overexpression of the intermediate filaments (IFs) glial fibrillary acidic protein (GFAP) and vimentin. A common thread in many retinal diseases is reactive Müller cell gliosis, an untreatable condition that leads to tissue scarring and even blindness. Here, we demonstrate that the vimentin-targeting small molecule withaferin A (WFA) is a novel chemical probe of GFAP. Using molecular modeling studies that build on the x-ray crystal structure of tetrameric vimentin rod 2B domain we reveal that the WFA binding site is conserved in the corresponding domain of tetrameric GFAP. Consequently, we demonstrate that WFA covalently binds soluble recombinant tetrameric human GFAP at cysteine 294. In cultured primary astrocytes, WFA binds to and down-regulates soluble vimentin and GFAP expression to cause cell cycle G(0)/G(1) arrest. Exploiting a chemical injury model that overexpresses vimentin and GFAP in retinal Müller glia, we demonstrate that systemic delivery of WFA down-regulates soluble vimentin and GFAP expression in mouse retinas. This pharmacological knockdown of soluble IFs results in the impairment of GFAP filament assembly and inhibition of cell proliferative response in Müller glia. We further show that a more severe GFAP filament assembly deficit manifests in vimentin-deficient mice, which is partly rescued by WFA. These findings illustrate WFA as a chemical probe of type III IFs and illuminate this class of withanolide as a potential treatment for diverse gliosis-dependent central nervous system traumatic injury conditions and diseases, and for orphan IF-dependent pathologies.


Asunto(s)
Ergosterol/análogos & derivados , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis , Retina , Degeneración Retiniana , Vimentina/metabolismo , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Ciclo Celular/efectos de los fármacos , Células Cultivadas , Ciclina D3/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Ergosterol/química , Ergosterol/metabolismo , Ergosterol/farmacología , Proteína Ácida Fibrilar de la Glía/genética , Gliosis/metabolismo , Gliosis/patología , Humanos , Ratones , Ratones Noqueados , Modelos Moleculares , Estructura Secundaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Retina/patología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Vimentina/química , Vimentina/genética , Witanólidos
17.
Biochim Biophys Acta ; 1790(10): 1345-52, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19619611

RESUMEN

BACKGROUND: The Src-family non-receptor-type tyrosine kinase Lyn, which is often associated with chemotherapeutic resistance in cancer, localizes not only to the plasma membrane but also Golgi membranes. Recently, we showed that Lyn, which is synthesized in the cytosol, is transported from the Golgi to the plasma membrane along the secretory pathway. However, it is still unclear how Golgi targeting of newly synthesized Lyn is regulated. METHODS: Subcellular localization of Lyn and its mutants was determined by confocal microscopy. RESULTS: We show that the kinase domain, but not the SH3 and SH2 domains, of Lyn is required for the targeting of Lyn to the Golgi, whereas the N-terminal lipids of the Lyn SH4 domain are not sufficient for its Golgi targeting. Although intact Lyn, which colocalizes with caveolin-positive Golgi membranes, can traffic toward the plasma membrane, kinase domain-deleted Lyn is immobilized on caveolin-negative Golgi membranes. GENERAL SIGNIFICANCE: Besides the SH4 domain, the Lyn kinase domain is important for targeting of newly synthesized Lyn to the Golgi, especially caveolin-positive transport membranes. Our results provide a novel role of the Lyn catalytic domain in the Golgi targeting of newly synthesized Lyn in a manner independent of its kinase activity.


Asunto(s)
Caveolinas/metabolismo , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Familia-src Quinasas/metabolismo , Animales , Sitios de Unión/genética , Células COS , Dominio Catalítico/genética , Membrana Celular/metabolismo , Chlorocebus aethiops , Cicloheximida/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microscopía Confocal , Mutación , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Dominios Homologos src/genética , Familia-src Quinasas/genética
18.
J Cell Sci ; 122(Pt 7): 965-75, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19258394

RESUMEN

Src-family tyrosine kinases (SFKs), which participate in a variety of signal transduction events, are known to localize to the cytoplasmic face of the plasma membrane through lipid modification. Recently, we showed that Lyn, an SFK member, is exocytosed to the plasma membrane via the Golgi region along the secretory pathway. We show here that SFK trafficking is specified by the palmitoylation state. Yes is also a monopalmitoylated SFK and is biosynthetically transported from the Golgi pool of caveolin to the plasma membrane. This pathway can be inhibited in the trans-Golgi network (TGN)-to-cell surface delivery by temperature block at 19 degrees C or dominant-negative Rab11 GTPase. A large fraction of Fyn, a dually palmitoylated SFK, is directly targeted to the plasma membrane irrespective of temperature block of TGN exit. Fyn(C6S), which lacks the second palmitoylation site, is able to traffic in the same way as Lyn and Yes. Moreover, construction of Yes(S6C) and chimeric Lyn or Yes with the Fyn N-terminus further substantiates the importance of the dual palmitoylation site for plasma membrane targeting. Taken together with our recent finding that Src, a nonpalmitoylated SFK, is rapidly exchanged between the plasma membrane and late endosomes/lysosomes, these results suggest that SFK trafficking is specified by the palmitoylation state in the SH4 domain.


Asunto(s)
Lipoilación , Dominios Homologos src , Familia-src Quinasas/química , Familia-src Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Chlorocebus aethiops , Cicloheximida/farmacología , Cisteína/metabolismo , Exocitosis/efectos de los fármacos , Humanos , Lipoilación/efectos de los fármacos , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fyn/química , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteínas Proto-Oncogénicas c-yes/química , Proteínas Proto-Oncogénicas c-yes/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/química , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Temperatura , Red trans-Golgi/efectos de los fármacos , Red trans-Golgi/enzimología
19.
Exp Cell Res ; 315(7): 1117-41, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19245808

RESUMEN

Src-family kinases (SFKs), which participate in various signaling events, are found at not only the plasma membrane but also several subcellular compartments, including the nucleus. Nuclear structural changes are frequently observed during transcription, cell differentiation, senescence, tumorigenesis, and cell cycle. However, little is known about signal transduction in the alteration of chromatin texture. Here, we develop a pixel imaging method for quantitatively evaluating chromatin structural changes. Growth factor stimulation increases euchromatic hypocondensation and concomitant heterochromatic hypercondensation in G(1) phase, and the levels reach a plateau by 30 min, sustain for at least 5 h and return to the basal levels after 24 h. Serum-activated SFKs in the nucleus were more frequently detected in the euchromatin areas than the heterochromatin areas. Nuclear expression of kinase-active SFKs, but not unrelated Syk kinase, drastically increases both euchromatinization and heterochromatinization in a manner dependent on the levels of nuclear tyrosine phosphorylation. However, growth factor stimulation does not induce chromatin structural changes in SYF cells lacking SFKs, and reintroduction of one SFK member into SYF cells can, albeit insufficiently, induce chromatin structural changes. These results suggest that nuclear tyrosine phosphorylation by SFKs plays an important role in chromatin structural changes upon growth factor stimulation.


Asunto(s)
Eucromatina/química , Eucromatina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Microscopía Fluorescente/métodos , Conformación de Ácido Nucleico , Familia-src Quinasas/metabolismo , Androstadienos/metabolismo , Animales , Anticuerpos Monoclonales/metabolismo , Células COS , Ciclo Celular/fisiología , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Chlorocebus aethiops , Eucromatina/genética , Células HeLa , Histonas/metabolismo , Humanos , Inhibidores de Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2/metabolismo , Transducción de Señal/fisiología , Vanadatos/metabolismo , Wortmanina , Familia-src Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA