Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biol Psychiatry ; 94(5): 393-404, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36736419

RESUMEN

BACKGROUND: High-level alcohol consumption causes neuroplastic changes in the brain that promote pathological drinking behavior. Some of these changes have been characterized in defined brain circuits and cell types, but unbiased approaches are needed to explore broader patterns of adaptations. METHODS: We used whole-brain c-Fos mapping and network analysis to assess patterns of neuronal activity during alcohol withdrawal and following reaccess in a well-characterized model of alcohol dependence. Mice underwent 4 cycles of chronic intermittent ethanol to increase voluntary alcohol consumption, and a subset underwent forced swim stress to further escalate consumption. Brains were collected either 24 hours (withdrawal) or immediately following a 1-hour period of alcohol reaccess. c-fos counts were obtained for 110 brain regions using iDISCO and ClearMap. Then, we classified mice as high or low drinkers and used graph theory to identify changes in network properties associated with high-drinking behavior. RESULTS: During withdrawal, chronic intermittent ethanol mice displayed widespread increased c-Fos expression relative to air-exposed mice, independent of forced swim stress. Reaccess drinking reversed this increase. Network modularity, a measure of segregation into communities, was increased in high-drinking mice after alcohol reaccess relative to withdrawal. The cortical amygdala showed increased cross-community coactivation during withdrawal in high-drinking mice, and cortical amygdala silencing in chronic intermittent ethanol mice reduced voluntary drinking. CONCLUSIONS: Alcohol withdrawal in dependent mice causes changes in brain network organization that are attenuated by reaccess drinking. Olfactory brain regions, including the cortical amygdala, drive some of these changes and may play an important but underappreciated role in alcohol dependence.


Asunto(s)
Alcoholismo , Síndrome de Abstinencia a Sustancias , Animales , Ratones , Consumo de Bebidas Alcohólicas , Alcoholismo/metabolismo , Encéfalo/metabolismo , Etanol , Ratones Endogámicos C57BL , Síndrome de Abstinencia a Sustancias/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo
2.
Alcohol Res ; 41(1): 13, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34729286

RESUMEN

People living with pain report drinking alcohol to relieve pain. Acute alcohol use reduces pain, and chronic alcohol use facilitates the emergence or exaggeration of pain. Recently, funding agencies and neuroscientists involved in basic research have turned their attention to understanding the neurobiological mechanisms that underlie pain-alcohol interactions, with a focus on circuit and molecular mediators of alcohol-induced changes in pain-related behavior. This review briefly discusses some examples of work being done in this area, with a focus on reciprocal projections between the midbrain and extended amygdala, as well as some neurochemical mediators of pain-related phenotypes after alcohol exposure. Finally, as more work accumulates on this topic, the authors highlight the need for the neuroscience field to carefully consider sex and age in the design and analysis of pain-alcohol interaction experiments.


Asunto(s)
Alcoholismo , Hiperalgesia , Alcoholismo/complicaciones , Amígdala del Cerebelo , Humanos , Hiperalgesia/inducido químicamente , Mesencéfalo , Péptidos
3.
J Neurophysiol ; 126(6): 2119-2129, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34817244

RESUMEN

Neuroimmune signaling is increasingly identified as a critical component of various illnesses, including chronic pain, substance use disorder, and depression. However, the underlying neural mechanisms remain unclear. Proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), may play a role by modulating synaptic function and long-term plasticity. The midbrain structure periaqueductal gray (PAG) plays a well-established role in pain processing, and although TNF-α inhibitors have emerged as a therapeutic strategy for pain-related disorders, the impact of TNF-α on PAG neuronal activity has not been thoroughly characterized. Recent studies have identified subpopulations of ventrolateral PAG (vlPAG) with opposing effects on nociception, with dopamine (DA) neurons driving pain relief in contrast to GABA neurons. Therefore, we used slice physiology to examine the impact of TNF-α on neuronal activity of both these subpopulations. We focused on female mice since the PAG is a sexually dimorphic region and most studies use male subjects, limiting our understanding of mechanistic variations in females. We selectively targeted GABA and DA neurons using transgenic reporter lines. Following exposure to TNF-α, there was an increase in excitability of GABA neurons along with a reduction in glutamatergic synaptic transmission. In DA neurons, TNF-α exposure resulted in a robust decrease in excitability along with a modest reduction in glutamatergic synaptic transmission. Interestingly, TNF-α had no effect on inhibitory transmission onto DA neurons. Collectively, these data suggest that TNF-α differentially affects the function of GABA and DA neurons in female mice and enhances our understanding of how TNF-α-mediated signaling modulates vlPAG function.NEW & NOTEWORTHY This study describes the effects of TNF-α on two distinct subpopulations of neurons in the vlPAG. We show that TNF-α alters both neuronal excitability and glutamatergic synaptic transmission on GABA and dopamine neurons within the vlPAG of female mice. This provides critical new information on the role of TNF-α in the potential modulation of pain, since activation of vlPAG GABA neurons drives nociception, whereas activation of dopamine neurons drives analgesia.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Neuronas GABAérgicas/fisiología , Sustancia Gris Periacueductal/fisiología , Transmisión Sináptica/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Sustancia Gris Periacueductal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología
4.
PLoS One ; 7(9): e45323, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23028932

RESUMEN

Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is abundant in striatal medium spiny neurons (MSNs). CaMKII is dynamically regulated by changes in dopamine signaling, as occurs in Parkinson's disease as well as addiction. Although CaMKII has been extensively studied in the hippocampus where it regulates excitatory synaptic transmission, relatively little is known about how it modulates neuronal function in the striatum. Therefore, we examined the impact of selectively overexpressing an EGFP-fused CaMKII inhibitory peptide (EAC3I) in striatal medium spiny neurons (MSNs) using a novel transgenic mouse model. EAC3I-expressing cells exhibited markedly decreased excitatory transmission, indicated by a decrease in the frequency of spontaneous excitatory postsynaptic currents (sEPSCs). This decrease was not accompanied by changes in the probability of release, levels of glutamate at the synapse, or changes in dendritic spine density. CaMKII regulation of the AMPA receptor subunit GluA1 is a major means by which the kinase regulates neuronal function in the hippocampus. We found that the decrease in striatal excitatory transmission seen in the EAC3I mice is mimicked by deletion of GluA1. Further, while CaMKII inhibition decreased excitatory transmission onto MSNs, it increased their intrinsic excitability. These data suggest that CaMKII plays a critical role in setting the excitability rheostat of striatal MSNs by coordinating excitatory synaptic drive and the resulting depolarization response.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Péptidos/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Transgénicos , Péptidos/genética , Receptores AMPA/genética , Receptores AMPA/metabolismo , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
5.
Nature ; 421(6920): 272-5, 2003 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-12529644

RESUMEN

Neurotransmitters such as acetylcholine and GABA (gamma-aminobutyric acid) mediate rapid synaptic transmission by activating receptors belonging to the gene superfamily of ligand-gated ion channels (LGICs). These channels are pentameric proteins that function as signal transducers, converting chemical messages into electrical signals. Neurotransmitters activate LGICs by interacting with a ligand-binding site, triggering a conformational change in the protein that results in the opening of an ion channel. This process, which is known as 'gating', occurs rapidly and reversibly, but the molecular rearrangements involved are not well understood. Here we show that optimal gating in the GABA(A) receptor, a member of the LGIC superfamily, is dependent on electrostatic interactions between the negatively charged Asp 57 and Asp 149 residues in extracellular loops 2 and 7, and the positively charged Lys 279 residue in the transmembrane 2-3 linker region of the alpha1-subunit. During gating, Asp 149 and Lys 279 seem to move closer to one another, providing a potential mechanism for the coupling of ligand binding to opening of the ion channel.


Asunto(s)
Agonistas de Receptores de GABA-A , Activación del Canal Iónico , Receptores de GABA-A/metabolismo , Sitios de Unión , Línea Celular , Cisteína/metabolismo , Disulfuros/metabolismo , Electrofisiología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Moleculares , Mutación/genética , Conformación Proteica , Receptores de GABA-A/química , Receptores de GABA-A/genética , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA